APPENDIX C: NOISE DATA | |
 | |--|------| # **Fundamentals of Noise** # **NOISE** Noise is most often defined as unwanted sound; whether it is loud, unpleasant, unexpected, or otherwise undesirable. Although sound can be easily measured, the perception of noise and the physical response to sound complicate the analysis of its impact on people. People judge the relative magnitude of sound sensation in subjective terms such as "noisiness" or "loudness." ### **Noise Descriptors** The following are brief definitions of terminology used in this chapter: - Sound. A disturbance created by a vibrating object, which, when transmitted by pressure waves through a medium such as air, is capable of being detected by a receiving mechanism, such as the human ear or a microphone. - **Noise.** Sound that is loud, unpleasant, unexpected, or otherwise undesirable. - **Decibel (dB).** A unitless measure of sound, expressed on a logarithmic scale and with respect to a defined reference sound pressure. The standard reference pressure is 20 micropascals (20 μPa). - Vibration Decibel (VdB). A unitless measure of vibration, expressed on a logarithmic scale and with respect to a defined reference vibration velocity. In the U.S., the standard reference velocity is 1 microinch per second (1x10-6 in/sec). - A-Weighted Decibel (dBA). An overall frequency-weighted sound level in decibels that approximates the frequency response of the human ear. - Equivalent Continuous Noise Level (L_{eq}); also called the Energy-Equivalent Noise Level. The value of an equivalent, steady sound level which, in a stated time period (often over an hour) and at a stated location, has the same A-weighted sound energy as the time-varying sound. Thus, the L_{eq} metric is a single numerical value that represents the equivalent amount of variable sound energy received by a receptor over the specified duration. - Statistical Sound Level (L_n). The sound level that is exceeded "n" percent of time during a given sample period. For example, the L₅₀ level is the statistical indicator of the time-varying noise signal that is exceeded 50 percent of the time (during each sampling period); that is, half of the sampling time, the changing noise levels are above this value and half of the time they are below it. This is called the "median sound level." The L₁₀ level, likewise, is the value that is exceeded 10 percent of the time (i.e., near the maximum) and this is often known as the "intrusive sound level." The L₉₀ is the sound level exceeded 90 percent of the time and is often considered the "effective background level" or "residual noise level." - Day-Night Sound Level (L_{dn} or DNL). The energy-average of the A-weighted sound levels occurring during a 24-hour period, with 10 dB added to the sound levels occurring during the period from 10:00 PM to 7:00 AM. - Community Noise Equivalent Level (CNEL). The energy average of the A-weighted sound levels occurring during a 24-hour period, with 5 dB added from 7:00 PM to 10:00 PM and 10 dB from 10:00 PM to 7:00 AM. NOTE: For general community/environmental noise, CNEL and L_{dn} values rarely differ by more than 1 dB (with the CNEL being only slightly more restrictive that is, higher than the L_{dn} value). As a matter of practice, L_{dn} and CNEL values are interchangeable and are treated as equivalent in this assessment. - Sensitive Receptor. Noise- and vibration-sensitive receptors include land uses where quiet environments are necessary for enjoyment and public health and safety. Residences, schools, motels and hotels, libraries, religious institutions, hospitals, and nursing homes are examples. #### Characteristics of Sound When an object vibrates, it radiates part of its energy in the form of a pressure wave. Sound is that pressure wave transmitted through the air. Technically, airborne sound is a rapid fluctuation or oscillation of air pressure above and below atmospheric pressure that creates sound waves. Sound can be described in terms of amplitude (loudness), frequency (pitch), or duration (time). Loudness or amplitude is measured in dB, frequency or pitch is measured in Hertz [Hz] or cycles per second, and duration or time variations is measured in seconds or minutes. #### Amplitude Unlike linear units such as inches or pounds, decibels are measured on a logarithmic scale. Because of the physical characteristics of noise transmission and perception, the relative loudness of sound does not closely match the actual amounts of sound energy. Table 1 presents the subjective effect of changes in sound pressure levels. Ambient sounds generally range from 30 dBA (very quiet) to 100 dBA (very loud). Changes of 1 to 3 dB are detectable under quiet, controlled conditions, and changes of less than 1 dB are usually not discernible (even under ideal conditions). A 3 dB change in noise levels is considered the minimum change that is detectable with human hearing in outside environments. A change of 5 dB is readily discernible to most people in an exterior environment, and a 10 dB change is perceived as a doubling (or halving) of the sound. | | Table 1 Nois | se Perceptibility | | |--|--------------|-------------------|--| |--|--------------|-------------------|--| | Change in dB | Noise Level | |--------------|-------------| | - | _ | Page 2 PlaceWorks | ± 3 dB | Threshold of human perceptibility | | | | |---|--|--|--|--| | ± 5 dB | Clearly noticeable change in noise level | | | | | ± 10 dB | Half or twice as loud | | | | | ± 20 dB | Much quieter or louder | | | | | Source: Bies, David A. and Colin H. Hansen. 2009. <i>Engineering Noise Control: Theory and Practice</i> . 4th ed. New York: Spon Press. | | | | | #### Frequency The human ear is not equally sensitive to all frequencies. Sound waves below 16 Hz are not heard at all, but are "felt" more as a vibration. Similarly, though people with extremely sensitive hearing can hear sounds as high as 20,000 Hz, most people cannot hear above 15,000 Hz. In all cases, hearing acuity falls off rapidly above about 10,000 Hz and below about 200 Hz. When describing sound and its effect on a human population, A-weighted (dBA) sound levels are typically used to approximate the response of the human ear. The A-weighted noise level has been found to correlate well with people's judgments of the "noisiness" of different sounds and has been used for many years as a measure of community and industrial noise. Although the A-weighted scale and the energy-equivalent metric are commonly used to quantify the range of human response to individual events or general community sound levels, the degree of annoyance or other response also depends on several other perceptibility factors, including: - Ambient (background) sound level - General nature of the existing conditions (e.g., quiet rural or busy urban) - Difference between the magnitude of the sound event level and the ambient condition - Duration of the sound event - Number of event occurrences and their repetitiveness - Time of day that the event occurs #### Duration Time variation in noise exposure is typically expressed in terms of a steady-state energy level equal to the energy content of the time varying period (called L_{eq}), or alternately, as a statistical description of the sound level that is exceeded over some fraction of a given observation period. For example, the L₅₀ noise level represents the noise level that is exceeded 50 percent of the time; half the time the noise level exceeds this level and half the time the noise level is less than this level. This level is also representative of the level that is exceeded 30 minutes in an hour. Similarly, the L₂, L₈ and L₂₅ values represent the noise levels that are exceeded 2, 8, and 25 percent of the time or 1, 5, and 15 minutes per hour, respectively. These "n" values are typically used to demonstrate compliance for stationary noise sources with many cities' noise ordinances. Other values typically noted during a noise survey are the L_{min} and L_{max}. These values represent the minimum and maximum root-mean-square noise levels obtained over the measurement period, respectively. Because community receptors are more sensitive to unwanted noise intrusion during the evening and at night, state law and many local jurisdictions use an adjusted 24-hour noise descriptor called the Community Noise Equivalent Level (CNEL) or Day-Night Noise Level (L_{dn}). The CNEL descriptor requires that an artificial increment (or "penalty") of 5 dBA be added to the actual noise level for the hours from 7:00 PM to 10:00 PM and 10 dBA for the hours from 10:00 PM to 7:00 AM. The L_{dn} descriptor uses the same methodology November 2016 Page 3 except that there is no artificial increment added to the hours between 7:00 PM and 10:00 PM. Both descriptors give roughly the same 24-hour level, with the CNEL being only slightly more restrictive (i.e., higher). The CNEL or L_{dn} metrics are commonly applied to the assessment of roadway and airport-related noise sources. ### **Sound Propagation** Sound dissipates exponentially with distance from the noise source. This phenomenon is known as "spreading loss." For a single-point source, sound levels decrease by approximately 6 dB for each doubling of distance from the source (conservatively neglecting ground attenuation effects, air absorption factors, and barrier shielding). For example, if a backhoe at 50 feet generates 84 dBA, at 100 feet the noise level would be 79 dBA, and at 200 feet it would be 73 dBA. This drop-off rate is appropriate for noise generated by on-site operations from stationary equipment or activity at a project site. If noise is produced by a line source, such as highway traffic, the sound decreases by 3 dB for each doubling of distance over a reflective ("hard site") surface such as concrete or asphalt. Line source noise in a relatively flat environment with ground-level absorptive vegetation decreases by an additional 1.5 dB for each doubling of distance. ### Psychological and Physiological Effects of Noise Physical damage to human hearing begins at prolonged exposure to noise levels higher than 85 dBA. Exposure to high noise levels affects the entire system, with prolonged noise exposure in excess of 75 dBA increasing body tensions, thereby affecting blood pressure and functions of the heart and the nervous system. Extended periods of noise exposure above 90 dBA results in permanent cell damage, which is the main driver for employee hearing protection regulations in the workplace. For community environments, the ambient or background noise problem is widespread, through generally worse in urban areas than in outlying, less-developed areas. Elevated ambient noise levels can result in noise interference (e.g., speech interruption/masking, sleep disturbance, disturbance of concentration) and cause annoyance. Since most people do not routinely work with decibels or A-weighted sound levels, it is often difficult to appreciate what a given sound pressure level number means. To help relate noise level values to common experience, Table 2 shows typical noise levels from familiar sources. Page 4 PlaceWorks Table 2 Typical Noise Levels | Common Outdoor Activities | Noise Level
(dBA) | Common Indoor Activities | |------------------------------------|----------------------|---| | Onset of physical discomfort | 120+ | | | | 110 | Rock Band (near amplification system) | | Jet Flyover at 1,000 feet | | | | | 100 | | | Gas Lawn Mower at three feet | | | | | 90 | | | Diesel Truck at 50 feet, at 50 mph | | Food Blender at 3 feet | | | 80 | Garbage Disposal at 3 feet | | Noisy Urban Area, Daytime | | | | | 70 | Vacuum Cleaner at 10 feet | | Commercial Area | | Normal speech at 3 feet | | Heavy Traffic at 300 feet | 60 | | | | | Large Business Office | | Quiet Urban Daytime | 50 | Dishwasher Next Room | | Quiet Urban Nighttime | 40 | Theater, Large Conference Room (background) | | Quiet Suburban Nighttime | | | | | 30 | Library | | Quiet Rural Nighttime | | Bedroom at Night, Concert Hall (background) | | | 20 | | | | | Broadcast/Recording Studio | | | 10 | | | Lowest Threshold of Human Hearing | 0 | Lowest Threshold of Human Hearing | #### **Vibration Fundamentals** Vibration is an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. Vibration is normally associated with activities stemming from operations of railroads or vibration-intensive stationary sources, but can also be associated with construction equipment such as jackhammers, pile drivers, and hydraulic hammers. As with noise, vibration can be described by both its amplitude and frequency. Vibration displacement is the distance that a point on a surface moves away from its original static position; velocity is the instantaneous speed that a point on a surface moves; and acceleration is the rate of change of the speed. Each of these descriptors can be used to correlate vibration to human response, building damage, and acceptable equipment vibration levels. During construction, the operation of construction equipment can cause groundborne vibration. During the operational phase of a project, receptors may be subject to levels of vibration that can cause annoyance due to noise generated from vibration of a structure or items within a structure. Vibration amplitudes are usually described in terms of either the peak particle velocity (PPV) or the root mean square (RMS) velocity. PPV is the maximum instantaneous peak of the vibration signal and RMS is the November 2016 Page 5 square root of the average of the squared amplitude of the signal. PPV is more appropriate for evaluating potential building damage and RMS is typically more suitable for evaluating human response. As with airborne sound, annoyance with vibrational energy is a subjective measure, depending on the level of activity and the sensitivity of the individual. To sensitive individuals, vibrations approaching the threshold of perception can be annoying. Persons accustomed to elevated ambient vibration levels, such as in an urban environment, may tolerate higher vibration levels. Table 3 displays the human response and the effects on buildings resulting from continuous vibration (in terms of various levels of PPV). Table 3 Human Reaction to Typical Vibration Levels | Vibration Level,
PPV (in/sec) | Human Reaction | Effect on Buildings | |----------------------------------|--|--| | 0.006-0.019 | Threshold of perception, possibility of intrusion | Vibrations unlikely to cause damage of any type | | 0.08 | Vibrations readily perceptible | Recommended upper level of vibration to which ruins and ancient monuments should be subjected | | 0.10 | Level at which continuous vibration begins to annoy people | Virtually no risk of "architectural" (i.e. not structural) damage to normal buildings | | 0.20 | Vibrations annoying to people in buildings | Threshold at which there is a risk to "architectural" damage to normal dwelling – houses with plastered walls and ceilings | | 0.4–0.6 | Vibrations considered unpleasant by people subjected to continuous vibrations and unacceptable to some people walking on bridges | Vibrations at a greater level than normally expected from traffic, but would cause "architectural" damage and possibly minor structural damage | Source: California Department of Transportation (Caltrans). 2004, June. Transportation- and Construction-Induced Vibration Guidance Manual. Prepared by ICF International. Page 6 PlaceWorks # CONSTRUCTION NOISE MODELING OUTPUT ### Bldg Roadway Construction Noise Model (RCNM), Version 1.1 Report date: 07/11/2018 Case Description: **** Receptor #1 **** | | | | Baselines | (dBA) | |-------------|-------------|---------|-----------|-------| | Description | Land Use | Daytime | Evening | Night | | | | | | | | 1 | Residential | 50.0 | 50.0 | 50.0 | ### Equipment -----Spec Actual Estimated Receptor Impact Usage Distance Shielding Lmax Lmax Description Device (%) (dBA) (dBA) (feet) (dBA) ---------Crane No 16 80.6 125.0 0.0 Man Lift 20 No 74.7 125.0 0.0 Tractor No 40 84.0 125.0 0.0 > Results ----- > > Noise Limits (dBA) Noise Limit Exceedance (dBA) | Night | | Day | Calculate | d (dBA)
Evening | Da
N | ny
light
 | Eveni | ng
 | | |------------------|------|-----|--------------|--------------------|--------------|-----------------|-------|--------|------| | Equipment
Leq | Lmax | Leq | Lmax
Lmax | Leq
Leq | Lmax
Lmax | Leq
Leq | Lmax | Leq | Lmax | | | | | | | | | | | | | Crane | | | 72.6 | 64.6 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | Man Lift | | | 66.7 | 59.8 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | Tractor | | | 76.0 | 72.1 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | | Tot | tal | 76.0 | 73.0 | N/A | N/A | N/A | N/A | N/A | | N/A | | | # Demo Roadway Construction Noise Model (RCNM), Version 1.1 Report date: 07/11/2018 Case Description: Demo **** Receptor #1 **** | | | | | Baselin | ies (dBA) | | |--------------|----------|----------|---------|---------|-----------|-----------| | Description | Land Use | <u> </u> | Daytime | Evening | Night | | | | | | | | | | | 1 | Resident | ial | 50.0 | 50.0 | 50.0 | | | | | | Equ | uipment | | | | | | | | | | | | | | | Spec | Actual | Receptor | Estimated | | | Impact | Usage | Lmax | Lmax | Distance | Shielding | | Description | Device | (%) | (dBA) | (dBA) | (feet) | (dBA) | | | | | | | | | | Concrete Saw | No | 20 | | 89.6 | 125.0 | 0.0 | | Excavator | No | 40 | | 80.7 | 125.0 | 0.0 | | Tractor | No | 40 | 84.0 | | 125.0 | 0.0 | Results Noise Limits (dBA) Noise Limit Exceedance (dBA) Calculated (dBA) Day Evening Night Night Day Evening Equipment Lmax Leq Lmax Leq Lmax Leq Lmax Lmax Leq Lmax Leq Lmax Leq ---------------Concrete Saw 81.6 74.6 N/A Excavator 72.8 N/A N/A N/A 68.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A Tractor 76.0 72.1 N/A Total 77.2 N/A N/A N/A N/A N/A 81.6 N/A N/A N/A N/A N/A N/A N/A # Grading Roadway Construction Noise Model (RCNM), Version 1.1 Report date: 07/11/2018 Case Description: Grading **** Receptor #1 **** | 5 | | | 5 | Baselir | , , | | |--------------|----------|----------|---------|---------|----------|-----------| | Description | Land Use | <u>)</u> | Daytime | Evening | Night | | | | | | | | | | | 1 | Resident | ial | 50.0 | 50.0 | 50.0 | | | | | | | | | | | | | | Equ | uipment | | | | | | | | | | | | | | | Spec | Actual | Receptor | Estimated | | | Impact | Usage | Lmax | Lmax | Distance | Shielding | | Description | Device | (%) | (dBA) | (dBA) | (feet) | (dBA) | | | | | | | | | | Concrete Saw | No | 20 | | 89.6 | 125.0 | 0.0 | | Excavator | No | 40 | | 80.7 | 125.0 | 0.0 | | Tractor | No | 40 | 84.0 | | 125.0 | 0.0 | Results Noise Limits (dBA) Noise Limit Exceedance (dBA) Calculated (dBA) Day Evening Night Evening Night Day Equipment Lmax Leq Lmax Leq Lmax Leq Lmax Lmax Leq Lmax Leq Lmax Leq ---------------Concrete Saw 81.6 74.6 N/A Excavator 72.8 68.8 N/A Tractor 76.0 72.1 N/A Total 77.2 N/A N/A N/A N/A N/A 81.6 N/A N/A N/A N/A N/A N/A N/A # Paving Roadway Construction Noise Model (RCNM), Version 1.1 Report date: 07/11/2018 Case Description: Paving **** Receptor #1 **** | Description
1 | Land Uso

Residen | - | Daytime

50.0 | Baseli
Evening

50.0 | Night | | |------------------|-------------------------|----------|---------------------|-------------------------------|----------------------|------------------------| | | | | Ec | quipment | | | | Daganintian | Impact | Usage | Spec
Lmax | Actual
Lmax | Receptor
Distance | Estimated
Shielding | | Description | Device | (%) | (dBA) | (dBA) | (feet) | (dBA) | | Paver
Roller | No
No | 50
20 | | 77.2
80.0 | 125.0
125.0 | 0.0
0.0 | | Tractor | No | 40 | 84.0 | | 125.0 | 0.0 | Results Noise Limits (dBA) ### Noise Limit Exceedance (dBA) Calculated (dBA) Day Evening Night Evening Night Day Equipment Lmax Leq Lmax Leq Lmax Leq Lmax Lmax Leq Lmax Leq Lmax Leq --------------------69.3 66.3 N/A N/A N/A N/A N/A Paver N/A N/A N/A N/A N/A N/A N/A Roller 72.0 65.1 N/A Tractor 76.0 72.1 N/A Total 76.0 N/A N/A N/A N/A N/A 73.7 N/A N/A N/A N/A N/A N/A N/A # Ref Levels_25 feet Roadway Construction Noise Model (RCNM), Version 1.1 Report date: 07/11/2018 Case Description: **** Receptor #1 **** | | | | Baselines | (dBA) | |-------------|-------------|---------|-----------|-------| | Description | Land Use | Daytime | Evening | Night | | | | | | | | ref 25 feet | Residential | 50.0 | 50.0 | 50.0 | # Equipment | Description | Impact
Device | Usage
(%) | Spec
Lmax
(dBA) | Actual
Lmax
(dBA) | Receptor
Distance
(feet) | Estimated
Shielding
(dBA) | | | | | |------------------|------------------|--------------|-----------------------|-------------------------|--------------------------------|---------------------------------|--|--|--|--| | Concrete Saw | No | 20 | | 89.6 | 25.0 | 0.0 | | | | | | Excavator | No | 40 | | 80.7 | 25.0 | 0.0 | | | | | | Tractor | No | 40 | 84.0 | | 25.0 | 0.0 | | | | | | Grader | No | 40 | 85.0 | | 25.0 | 0.0 | | | | | | Scraper | No | 40 | | 83.6 | 25.0 | 0.0 | | | | | | Crane | No | 16 | | 80.6 | 25.0 | 0.0 | | | | | | Man Lift | No | 20 | | 74.7 | 25.0 | 0.0 | | | | | | Paver | No | 50 | | 77.2 | 25.0 | 0.0 | | | | | | Roller | No | 20 | | 80.0 | 25.0 | 0.0 | | | | | | Compressor (air) | No | 40 | | 77.7 | 25.0 | 0.0 | | | | | #### Results ----- Noise Limits (dBA) # Noise Limit Exceedance (dBA) | Night | | Day | Calculated (dBA) Evening | | Day
Night | | Evening | | | | |--------------------------------|-----------|-----|--------------------------|---------------------|-------------------|-------------------|------------|------------|------------|--| | Equipment
Leq | Lmax | Leq | Lmax
Lmax | Leq
Leq | Lmax
Lmax | Leq
Leq | Lmax | Leq | Lmax | | | Concrete S
N/A
Excavator | aw
N/A | N/A | 95.6
N/A
86.7 | 88.6
N/A
82.8 | N/A
N/A
N/A | N/A
N/A
N/A | N/A
N/A | N/A
N/A | N/A
N/A | | | | | | | Ref Level | .s_25 feet | | | | | |------------|-------|-----|------|-----------|------------|-----|-----|-----|-----| | N/A | | | | Tractor | | | 90.0 | 86.0 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | Grader | | | 91.0 | 87.0 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | Scraper | | | 89.6 | 85.6 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | Crane | | | 86.6 | 78.6 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | Man Lift | | | 80.7 | 73.7 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | Paver | | | 83.2 | 80.2 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | Roller | | | 86.0 | 79.0 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | Compressor | (air) | | 83.7 | 79.7 | N/A | N/A | N/A | N/A | N/A | | N/A | | | | | Tot | al | 95.6 | 94.1 | N/A | N/A | N/A | N/A | N/A | | N/A | | | # Site Prep Roadway Construction Noise Model (RCNM), Version 1.1 Report date: 07/11/2018 Case Description: Site Prep **** Receptor #1 **** | Description | Land Us | e | Daytime | Baseli
Evening | ` ' | | |------------------------------|------------------|----------------|-----------------------|-------------------------|--------------------------------|---------------------------------| | 1 | Residential | | 50.0 | 50.0 | 50.0 | | | | | | Eq | uipment
 | | | | Description | Impact
Device | Usage
(%) | Spec
Lmax
(dBA) | Actual
Lmax
(dBA) | Receptor
Distance
(feet) | Estimated
Shielding
(dBA) | | Grader
Scraper
Tractor | No
No
No | 40
40
40 | 85.0
84.0 | 83.6 | 125.0
125.0
125.0 | 0.0
0.0
0.0 | Results Noise Limits (dBA) Noise Limit Exceedance (dBA) Calculated (dBA) Day Evening Night Evening Night Day Equipment Lmax Leq Lmax Leq Lmax Leq Lmax Lmax Leq Lmax Leq Lmax Leq ---------------Grader 77.0 73.1 N/A Scraper 75.6 N/A N/A N/A N/A 71.6 N/A N/A N/A N/A N/A N/A N/A N/A Tractor 76.0 72.1 N/A Total 77.0 N/A N/A N/A N/A N/A 77.1 N/A N/A N/A N/A N/A N/A N/A # TRAFFIC NOISE INCREASE CALCULATIONS | | AM Peak | PM Peak | | | |---|---------|---------|--------|-------------| | Roadway Segment | Hour | Hour | ADT | Noise Incre | | Wolfe Road - North of Homestead Road | | | | | | Existing Conditions | 2,306 | 2,901 | 26,000 | | | Background Conditions | 2,809 | 3,202 | 30,000 | 1 | | Existing + Project Conditions | 2,652 | 3,062 | 28,500 | 0.4 | | Background + Project Conditions | 2,833 | 3,224 | 30,500 | | | Future Growth No Project Conditions | 2,904 | 3,312 | 31,000 | | | Future Growth Conditions | 2,928 | 3,334 | 31,500 | 0.8 | | Cumulative + Project (*Vallco TIA) | 2,926 | 3,124 | 30,500 | 0.7 | | Wolfe Road - Between Homestead Road & I-280 | | | | | | Existing Conditions | 3,324 | 4,728 | 40,500 | | | Background Conditions | 3,649 | 5,854 | 47,500 | 1 | | Existing + Project Conditions | 3,360 | 4,768 | 40,500 | 0.0 | | Background + Project Conditions | 3,685 | 5,894 | 48,000 | | | Future Growth No Project Conditions | 3,770 | 6,026 | 49,000 | | | Future Growth Conditions | 3,806 | 6,066 | 49,500 | 0.9 | | Cumulative + Project (*Vallco TIA) | 4,369 | 4,814 | 46,000 | 0.6 | | Wolfe Road - South of I-280 | | | | | | Existing Conditions | 3,034 | 2,922 | 30,000 | | | Background Conditions | 3,414 | 3,322 | 33,500 | Ī | | Existing + Project Conditions | 3,052 | 2,938 | 30,000 | 0.0 | | Background + Project Conditions | 3,432 | 3,338 | 34,000 | | | Future Growth No Project Conditions | 3,526 | 3,428 | 35,000 | | | Future Growth Conditions | 3,544 | 3,444 | 35,000 | 0.7 | | Cumulative + Project (*Vallco TIA) | 5,624 | 5,977 | 58,000 | 2.9 | | Homestead Road - West of Wolfe Road | | | | | | Existing Conditions | 1,719 | 2,819 | 22,500 | | | Background Conditions | 1,866 | 2,940 | 24,000 | | | Existing + Project Conditions | 1,724 | 2,824 | 22,500 | 0.0 | | Background + Project Conditions | 1,871 | 2,945 | 24,000 | | | Future Growth No Project Conditions | 1,929 | 3,043 | 25,000 |] | | Future Growth Conditions | 1,934 | 3,048 | 25,000 | 0.5 | | Cumulative + Project (*Vallco TIA) | 2,568 | 2,868 | 27,000 | 0.8 | | Homestead Road - East of Wolfe Road | | | | | | Existing Conditions | 2,607 | 2,370 | 25,000 | 1 | | Background Conditions | 2,804 | 2,574 | 27,000 | | | Existing + Project Conditions | 2,618 | 2,381 | 25,000 | 0.0 | | Background + Project Conditions | 2,815 | 2,585 | 27,000 | | | Future Growth No Project Conditions | 2,899 | 2,660 | 28,000 | | | Future Growth Conditions | 2,910 | 2,671 | 28,000 | 0.5 | | Cumulative + Project (*Vallco TIA) | 2,913 | 3,364 | 31,500 | 0.2 |