APPENDIX C: GEOTECHNICAL REPORT

.....

.....

Geotechnical Report

For the New Development at

22690 Stevens Creek Cupertino, CA 95014 APN#342-14-104

Prepared for

Mr. Ali Mozaffari Alan Enterprise LLC

By

Achievement Engineering Corp. 2455 Autumnvale Drive, Unit E San Jose, California, 95131

Project Number: 4134 Date: March 03, 2020

Project Number: 4134 Date: March 03, 2020

Mr. Ali Mozaffari 22690 Stevens Creek Cupertino, CA 95014

Subject: Geotechnical Report for the New Development at 22690 Stevens Creek Cupertino, CA 95014 APN#342-14-104

Dear Sir,

Achievement Engineering Corp. (AEC) is pleased to submit this Geotechnical Report for the abovereferenced project. The purpose of this study was to evaluate the subsurface soil conditions at the proposed site and develop recommendations for the design and construction of the structure foundations.

We appreciate the opportunity to be of service to you on this project and would be happy to discuss our findings with you. We look forward to serving as your geotechnical/ environmental engineer on the future projects.

Respectfully Submitted, Achievement Engineering Corp.

Sadaf M. Safaai, PE Project Engineer

Copies: Mr. Ali Mozaffari, Alan Enterprise LLC

1- Int	roduction1
1-1-	Project Description 1
1-2-	Geologic Setting and Faults1
1-2-1	Regional Geology1
2- Pro	ject Investigation
2-1-	Field Investigation and Exploratory Boreholes
2-1	-1- Ground Water Table4
2-1	-2- Standard Penetration Test (SPT) (ASTM: D1586)
2-2-	Laboratory Test Results6
2-2	-1- Grain Size Analysis
2-3-	Natural Moisture Content and Density Test
3- De	scription of Soil Layers
3-1-	General Description of the Subsurface Soil Layers
3-2-	Geotechnical Parameters
4- Fo	undation Design Recommendations
4-1-	Recommended Foundation
4-2-	Allowable Bearing Capacity
4-3-	Total Settlement11
4-4-	Differential Settlement11
4-5-	Modulus of Subgrade Reaction11
4-6-	Ground Floor Slabs11
4-7-	Lateral Resistance
4-8-	Site and Foundation Drainage
4-9-	Utility Trenches
5- Lic	juefaction Consideration
6- Sei	smic Design Considerations
7- Co	nstruction Considerations14
7-1-	General14
7-2-	Fill Materials14
7-2	-1- Compacted Structural Fill
7-2	-2- Common Fill
7-3-	Quality Control
8- Su	mmary of Design recommendation
9- Lir	nitations16
10- Re	ferences17

Table of Contents

Exhibit I – Boring Logs Exhibit II - Lab Results Exhibit III - Maps Exhibit IV – USGS Seismic Design Exhibit V – Shallow Footing Design

1-Introduction

Achievement Engineering Corp. (AEC) has performed a geotechnical investigation at 22690 Stevens Creek, Cupertino, CA 95014. This report discusses the findings of the geotechnical investigation program, including the site soils and groundwater presence, and presents recommendations for the design and construction of the foundation of the structure.

The objective of this report is to evaluate the characteristics of the subsurface strata and to obtain geotechnical parameters for the design of the foundation.

The following report highlights the significant findings and conclusions representing our best professional judgment based on information and data available to us during the course of this investigation.

1-1- Project Description

The purpose of this study was to investigate the subsurface soil and groundwater presence at the site of 22690 Stevens Creek, Cupertino, CA 95014 and to develop foundation design recommendations for the project based on our evaluation of subsurface conditions. In addition, comments and recommendations related to foundation are provided in this report. Other geotechnical aspects of the project design, including lateral earth pressures, drainage and backfill requirements, are also discussed.

The Site is located at 22690 Stevens Creek, Cupertino, CA 95014, with coordinates of 37° 19' 18.32" N and 122° 04' 8.12" W.

The vicinity map of the project is illustrated in Exhibit III. The Site Location in Topographic Map and Landslide Map have also been presented in Exhibit III of the report showing the subject site is located on Class 0 - No Susceptibility Landslide Zone (Source USGS).

1-2- Geologic Setting and Faults

1-2-1 Regional Geology

The project site is located within the Coast Range Geomorphic Province. Local uplift of the Santa Cruz Mountains within the last 2 to 3 million years has occurred due to a restraining bend of the San Andreas Fault, producing transpressional forces across the plate boundary. Thrust faults bound the San Andreas Fault, are responsible for uplift of the range. The range is characterized by rugged hills with moderate relief, steep valleys, and locally steep hillsides abutting drainages. East-flowing

drainages result in dissection of the mountain range and alluvial deposition within the San Francisco Bay structural trough.

The site is underlain by surficial sediments (Qoa/Qt), older surficial sediments (age; late Pleistocene) older alluvial terrace gravel; sand and clay, un-deformed.

The Site Location on 7.5' Series Geologic Map by USGS, has been represented in Exhibit III of the report.

1-2-2- Faults

Fault activity map of California (CGS, 2010) shows that there are some faults around the site location (Exhibit III). Among the eight faults of Monte Vista-Shannon, Berrocal, Cascade, Stanford, San Andreas San Jose, Pulgas and Butano, the nearest one to the site location is Monte Vista-Shannon fault with a distance of 0.5 mile (Exhibit III) and the most major one is San Andreas with a distance of 4.7 miles.

The project site is located on the north of Monte Vista-Shannon (0.5 mi.), northeast of Berrocal Fault (1.91 mi.), northwest of Cascade Fault (2.13), southwest of Stanford Fault (4.0 mi.), northeast of San Andreas fault (4.7 mi.), southwest of San Jose (6.32 mi.), southeast of Pulgas (7.29 mi.) and northeast of Butano Fault (8.45 mi).

The Monte Vista Shannon Fault is a potentially active fault. It is a relatively short fault that runs between and generally parallel to the much longer San Andreas Fault and Hayward Fault Zones, trending northwest along the eastern foothills of the Santa Cruz Mountains in the Coast Range Geomorphic Province. The most recent activity has been estimated to have been approximately 700,000 years ago. It has a slip rate of 0.4 mm/year. The fault runs through the campus of the Foothill College.

The Berrocal is a late Quaternary southwest-dipping, reverse-dextral oblique slip fault zone that forms a part of what has been referred to as the Southwestern Santa Clara Valley thrust belt. The Berrocal fault zone, which is commonly associated with the Monte Vista-Shannon fault zone, offsets sediment of the Pliocene-Pleistocene Santa Clara Formation and probably deforms late Pleistocene fluvial and alluvial fan deposits. It has been concluded that the Berrocal fault zone lacks evidence of Holocene displacement. Late Quaternary slip rate is poorly constrained and the recurrence interval is not known. The amount of uplift of late Pleistocene terraces (about 250 ka) of ancestral Los Gatos Creek suggests a post-250 ka incision rate of 0.6 mm/yr.

The Cascade fault is a potentially active fault. It is a relatively short fault that stretches from City of Los Gatos to City of Los Altos in Southern Bay Area. This fault is an undifferentiated Quaternary possibly active in Late Quaternary or Holocene, reverse to reverse-dextral oblique slip fault that

forms a part of what McLaughlin et al. (1996) refer to as the Southwestern Santa Clara Valley thrust belt, which is located generally along the foothills of the northeastern Santa Cruz Mountains. Slip rates for the Cascade fault is still unknown, although Hitchcock and Kelson (1999) determined a 0.2 ± 0.05 mm/yr incision rate of Regnart Creek across the trace of the Cascade fault.

Stanford and Pulgas Faults are Quaternary fault with undifferentiated ages. The San Andreas is the best-known and largest fault system in North America. This fault trends in a northwesterly direction for nearly 780 miles through much of western California. It is a transform boundary separating two crustal plates that move very slowly. The Pacific plate located at the west, moves northwestward relative to the North America plate, causing earthquakes along the faults. The slip rate for this fault is up to 1.5 in./year.

The San Jose fault dips steeply to the north. Type of Faulting is left-lateral strike-slip; minor reverse component possible with a length of 18 km, close to Claremont, La Verne and Pomona. Its last Significant Quake was Feb. 28, 1990 (ML 5.4). Its most recent surface rupture was Late Quaternary. It has a slip rate between 0.2 and 2.0 mm/yr with probable magnitude of ML 5 to 6.

The San Andreas is the best-known and largest fault system in North America. This fault trends in a northwesterly direction for nearly 780 miles through much of western California. It is a transform boundary separating two crustal plates that move very slowly. The Pacific plate located at the west, moves northwestward relative to the North America plate, causing earthquakes along the faults. The slip rate for this fault is up to 1.5 in./year.

The Butano Fault extends for 46 km from San Gregorio to the San Andreas Fault; it exhibits right lateral motion, at slip rate of less than 0.2 mm/yr. (Quaternary Fault and Fold Database of the United States).

2- Project Investigation

A subsurface exploration program consisting of two test borings was conducted on 2 February 2020 under the supervision of AEC.

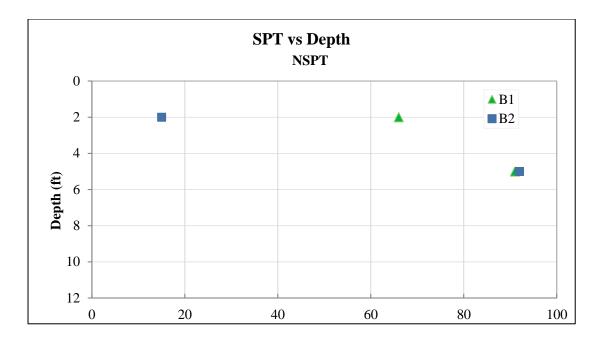
2-1- Field Investigation and Exploratory Boreholes

The test borings were drilled up to depths of 7 and 8 ft. below the ground surface. Borings were advanced using 3 $_{1/2}$ " diameter hollow stem augers. Borings were terminated at these depths due to refusal. Table 1 shows the specifications of the boreholes; the boreholes location is shown in Exhibit III. Boreholes log is also presented in Exhibit I of the report.

Borehole Name	Depth (ft.)	Diameter (inch)
B1	7	3 1/2"
B2	8	3 1/2"

Table 1- Specifications of the borehole

2-1-1- Ground Water Table


According to the boreholes log, no water table has been encountered in borehole up to depth of 8 ft.

2-1-2- Standard Penetration Test (SPT) (ASTM: D1586)

Soil samples were typically recovered continuously at 1-2 ft. intervals by driving a standard splitspoon sampler ((1-3/8 in). I.D., (2 in.) O.D., a distance of 18 inches or 24 inches into the undisturbed soil under the impact of a 140 lb. hammer free-falling 30 inches. The number of blows required to advance the sampler through each 6 in. interval was recorded. The "N" value is taken as the number of blows required to advance the sampler the last 12 in. of the 18-in. sampling range. When the splitspoon sampler was advanced over 24-in. range, the "N" value is the number of blows required to drive the sampler the middle 12 in. Variations of SPT versus depth, in different boreholes, are presented in Figure 1 and Table 2.

	Depth (ft)	$\mathbf{N}_{\mathrm{spt}}$
D1	2	>50
B1	5	>50
D)	2	15
B2	5	>50

Table 2-The value of SPT versus depth in borehole

Figure 1-Variation of SPT versus depth in different boreholes

According to SPT test results, the SPT value is more than 50 in B1 which is due to a very dense layer of clayey sand, also the SPT values are 15 near the ground surface in B2 and are more than 50 in other depths, this shows existence of a firm layer of clay near ground at B2, but eventually that the consistency will change to hard.

According to the US Army Corps of Engineers, ENGINEER MANUAL ENGINEERING AND DESIGN, Geotechnical Investigations, the descriptive consistency of fine-grained soils may be classified as "very firm" to "hard" per SPT correlation and "very dense" for coarse-grained soils.

Density of Coarse-Grained Soils						
Descriptive Term	Blows per Foot ^{1,2}	Field Test				
Very loose	Less than 4					
Loose	4-10	Easily penetrated with a 13-mm- (1/2-in) diam reinforcing rod pushed by hand				
Medium dense	10-30	Easily penetrated with a 13-mm- (1/2-in) diam reinforcing rod driven with a 2.3-kg (5-lb) hammer				
Dense rod	30-50	Penetrated 0.3 m (1 ft) with a 13-mm- (1/2-in) diam reinforcing driven with a 2.3-kg (5-lb) hammer				
Very dense	Greater than 50	Penetrated only a few centimeters with a 13-mm- (1/2-in) diam reinforcing rod driven with a 2.3-kg (5-lb) hammer				

Manual)

Descriptive	Blows ¹ per	Unconfined Compressive Strength				
Term	Foot ²	kPa	(tsf)	Field Test		
Very soft	<2	<25	(< 0.25)	Core (height twice diameter) sags under its own weight while standing on end; squeezes between fingers when fist is closed		
Soft	2-4	25-50	(0.25-0.5)	Easily molded by fingers		
Medium	4-8	50-100	(0.5-1.0)	Molded by strong pressure of fingers		
Firm	8-15	100-190	(1.0-2.0)	Imprinted very slightly by finger pressure		
Very <mark>f</mark> irm	15-30	190-380	(2.0-4.0)	Cannot be imprinted with finger pressure; can be penetrated with a pencil		
Hard	> 30	> 380	(> 4.0)	Imprinted only slightly by pencil point		

Table 4- Strength of fine-grained soils (US Army Corps of Engineers Manual)

2-2- Laboratory Test Results

A laboratory soil testing program was performed to determine soil classification and for correlation of engineering properties. Laboratory tests were performed on selected samples of the soils. Testing consisted of geotechnical index tests including water content and density determinations and grain size distributions and Atterberg Limits. The results of these tests have been used to <u>estimate</u> the main parameters required for designing of the foundation, such as internal friction angle and cohesion. The details of Lab tests are presented in Exhibit II.

2-2-1- Grain Size Analysis

Particle size analysis ASTM (D421-85(02)), (D422-63(02))

Atterberg limits (AASHTO T89 and T90 – ASTM D4318)

The particle size analysis is conducted on the selected soil samples in accordance with the abovementioned standards.

According to particle distribution results, soil classification is determined in compliance with the Unified Soil Classification System (USCS) (ASTM D2487 and ASTM D2488) and is recorded on the borehole log. Grain size distribution tests results are presented in Table 5. According to grain size distribution tests results, alluvial part of the site is categorized mainly as clay of low plasticity and clayey sand.

Borehole	Sample	Graining (%)			Atter Lim		Classification	
No.	Depth (ft.)	Gravel	Sand	Clay and Silt	LL %	PI %	(USCS)	
B1	2	22.8	44.3	32.9	23.9	9	SC	
B1	2	9.5	36.3	54.2	22.8	9.5	CL	

 Table 5- Grain size distribution tests results

2-3- Natural Moisture Content and Density Test

- Natural moisture content ASTM (D2216-98)

The natural moisture contents of soil samples are measured for the selected samples, the value of each is indicated in borehole logs.

- Density Tests

Density of the selected soil samples has been determined by measuring the weight and volume of the samples obtained from sample liners. Water content and dry density tests results of the soil samples are summarized in Table 6.

Borehole No.	Sample Depth (ft.)	Height of Sample	w (%)	Dry Density (pcf)	
B1	1-2	-	12	-	
B1	2-3.5	6"	10	122.2	
B1	B1 4-5		11	-	
B1	B1 5-6.5		11	120.7	
B2 1-2		-	9	-	
B2 2-3.5		6"	10	107.4	
B2	B2 4-5		11	-	
B2 5-6.5		6"	12	116.5	

Table 6- Water content and dry unit weight

3- Description of Soil Layers

3-1- General Description of the Subsurface Soil Layers

Based on the visual observations during the drilling, in-situ test results and laboratory testing, the encountered soil is generally classified as:

- Clayey sand (SC)
- Clay of low plasticity (CL)

The soil is classified as very dense clayey sand in B1 and a very firm low plasticity clay in B2 (at surface).

3-2- Geotechnical Parameters

The SPT has been used to correlate engineering parameters such as strength, angle of internal friction (Table 7) and the stress-strain modulus (Es) as shown in Table 8.

Table 7- Typical values of soil friction angle for different soils according to USCS

Description	USCS	Soil friction	Reference	
Description	0303	min	max	Reference
Inorganic clays, silty clays, sandy clays of low plasticity	CL	27	35	[1]
Silty clay	OL, CL, OH, CH	18	32	[2]
Clay	CL, CH, OH, OL	18	28	[2]

1. Swiss Standard SN 670 010b, Characteristic Coefficients of soils, Association of Swiss Road and Traffic Engineers

2. Minnesota Department of Transportation, Pavement Design, 2007

Table 8-Equations for stress-strain modulus Es h	by several test methods (Bowles, 2002)
--	--

Soil	SPT	СРТ		
Sand (normally	$E_s = 500(N+15)$	$E_s = (2 \text{ to } 4)q_u$		
consolidated)	$= 7000 \sqrt{N}$	$= 8000 \sqrt{q_c}$		
	= 6000 <i>N</i>			
		$E_s = 1.2(3D_r^2 + 2)q_c$		
	$\ddagger E_s = (15000 \text{ to } 22000) \cdot \ln N$	$*E_s = (1+D_r^2)q_c$		
Sand (saturated)	$E_s = 250(N+15)$	$E_s = Fq_c$		
		e = 1.0 $F = 3.5$		
		e = 0.6 $F = 7.0$		
Sands, all (norm. consol.)	$\P E_s = (2600 \text{ to } 2900) N$			
Sand (overconsolidated)	$\dagger E_s = 40000 + 1050N$	$E_s = (6 \text{ to } 30)q_c$		
	$E_{s(\text{OCR})} \approx E_{s,\text{nc}} \sqrt{\text{OCR}}$			
Gravelly sand	$E_s = 1200(N+6)$			
	$= 600(N+6) \qquad N \le 15$			
	$= 600(N+6) + 2000 \qquad N > 1$	5		
Clayey sand	$E_s = 320(N+15)$	$E_s = (3 \text{ to } 6)q_c$		
Silts, sandy silt, or clayey silt	$E_s = 300(N+6)$	$E_s = (1 \text{ to } 2)q_c$		
	If $q_c < 2500$ kPa use ${}^{\$}E'_s =$	$2.5q_c$		
	$2500 < q_c < 5000 \text{ use} \qquad E'_s = $ where	-		
	$E'_s = \text{constrained modulus} = \frac{E_s}{(1+s)^2}$	$\frac{(1-\mu)}{(1-2\mu)} = \frac{1}{m}$		
Soft clay or clayey silt		$E_s = (3 \text{ to } 8)q_c$		

 E_s in kPa for SPT and units of q_c for CPT; divide kPa by 50 to obtain ksf.

Final values of geotechnical parameters for the subject site using the field observations, in-situ and laboratory tests are summarized in Table 9.

Material	γ _{wet} (pcf)	γ _{sat} (pcf)	c (ksf)	φ (degrees)	E _s (ksf)	v	K ₀	Ka	Kp	
SC	134	138	0.3	30	600	0.3	0.5	0.33	3.0	
CL	124	132	0.35	27	350	0.4	0.55	0.38	2.66	
γ wet : wet unit weight in t	he field.	Es : elastic	Es : elasticity modulus							
γ sat $:$ saturated unit weight.		V : poisson	V : poisson ratio							
C : cohesion.		K _{0 : at rest}	K ₀ : at rest earth pressure							
ϕ : angle of internal frict	Ka, Kp:a	ctive and pass	ive earth pressu	ire						

4- Foundation Design Recommendations

Recommendations presented herein are based on the proposed building layout and site development plan as understood at this time. The development is muli-family residential and commercial structures of three story. However, at the time of preparation of this report, structural column loads were not available and no construction document is available. As further information is developed by the architect and/or structural engineer concerning these items, the design criteria should be reviewed by AEC for continued applicability. As a general recommendation, foundation and below-grade elements of the building should be designed in accordance with the building code selected for design. The following sections provide specific geotechnical design recommendations for the foundation and below-grade structure, if any.

The foundation bearing soils are typically very firm low plasticity clay and very dense clayey sand. It is necessary to build up the subgrade to achieve the proposed footing subgrade level, for this it is recommended that compacted structural fill be used. The compacted structural fill should be graded in accordance with the recommendations in Section 7.2.1.

4-1- Recommended Foundation

Based on the loading conditions assumed by us and subsurface conditions as observed in the field investigations it is our opinion that direct soil bearing foundations such as reinforced concrete **strip foundation** will likely provide the most technically-feasible and cost-effective foundation system for the proposed structure.

4-2- Allowable Bearing Capacity

As noted above, the foundation bearing soils at the site consist of very firm low plasticity clay and very dense clayey sand. The recommended maximum allowable gross bearing pressure for design of **strip footing** in these soils in undisturbed condition is **3.3 ksf** for **18 in. width** and **3.2 ksf** for **15 in.** widths. This bearing pressure value applies to the total dead load plus permanently and/or frequently applied live loads including the weight of the foundation elements. This bearing pressure may however, be increased by one-third when considering transient loads such as earthquake forces.

The least lateral dimension of continuous footings should be 18 in., for the structures. Exterior footings and footings in unheated areas should bear a minimum of 12 in. below the adjacent ground surface. The bottom of footings should be established below a 2 horizontal to 1 vertical (2H:1V) slope line drawn upward and outward from the bottom of any adjacent utility or structure.

The outputs of foundation bearing capacity are presented in Exhibit V and can be consulted for other footing widths, in case of existence of detached parkings in the development for example.

4-3- Total Settlement

Settlement considerations, rather than bearing capacity, generally control spread footing or reinforced concrete mat foundation selection and design at these depths in these soils. It is our opinion that for the maximum allowable bearing pressure recommended above, soil bearing foundations should experience a maximum post-construction settlement of approximately 1 in. We anticipate that the majority of the settlements will occur during or soon after construction with the largest settlements occurring at the center of the structure. As noted above, the anticipated bearing pressure is more than the existing pressure of the overburden soils at the proposed bearing elevation so settlement will control foundation selection.

4-4- Differential Settlement

Differential settlements are generally caused by variations in soil profile (including layer thickness), compressibility characteristics, applied load, bearing pressures, foundation dimension, and foundation stiffness. At this time, it is expected that the differential settlement should be on the order of $\frac{1}{2}$ inch. However, when the design documents are ready, this value should be re-evaluated.

4-5- Modulus of Subgrade Reaction

If a reinforced concrete strip is selected as the preferred option, the structural design of reinforced concrete strip foundations typically requires a modulus of subgrade reaction (Winkler spring) or a similar elastic analysis method to determine thickness and reinforcing requirements for the **strip** foundation. We recommend that a modulus of subgrade reaction (k_s) of **116 kips per cubic foot** (**kcf**) be used.

4-6- Ground Floor Slabs

It is recommended that the ground floor slabs of buildings and structures, if any, be designed as soilsupported slabs-on-grade, bearing on a minimum 6-inch thick layer of crushed stone that is graded in accordance with the recommendations in Section 7.2. We also recommend that a 10 mil-thick polyethylene vapor barrier be placed on top of the aggregate layer to reduce moisture condensation on the underside of the slab-on-grade.

4-7- Lateral Resistance

Shallow foundations bearing on a reinforced subgrade or on compacted structural fill may be designed to resist lateral forces using a friction coefficient of 0.4 along the bottom of the foundations and a passive resistance of 365 pounds per square foot per foot (pcf) of depth on the vertical sides of the foundations. This value does not include a safety factor; a safety factor of 1.5 should be used

against sliding in the design. The frictional and passive pressure components of lateral resistance may be combined, provided that passive resistance does not exceed two-thirds of the total. The top 24-in of soil should be neglected when calculating passive lateral earth pressures unless the area around the foundation is covered with pavement.

Retaining wall, if any, will be subjected to lateral earth pressures. A soil wet unit weight and coefficient of active lateral earth pressure (k_a) of 129 pcf and 0.42, respectively, should be utilized for design of walls.

Additional active pressure should be added for a surcharge condition due to sloping ground, vehicular traffic or adjacent structures and should be designed for each condition as the project progresses.

4-8- Site and Foundation Drainage

As previously discussed, and as shown on the test boring logs, groundwater was not encountered in any of the other explorations. However, during periods of significant precipitation, or during the spring thaw, there is a possibility that water could become trapped on the outside face of the walls, with no way to relieve the pressure head from the accumulated water, the water could exert excess pressure on the walls and leak into the finished below grade spaces.

To drain such water, it is recommended that a perimeter wall drain be provided along the outside of the wall. The perimeter drain should consist of a 0.1 m (4-inch) diameter perforated pipe surrounded by 0.15 m (6 inches) of crushed stone, graded in accordance with the recommendations in Section 7.2.2, placed inside a non-woven geotextile filter fabric to limit silting. The perimeter drain trench should be backfilled with compacted structural fill. Pipe invert elevations should be kept below the bottom of the adjacent slab but above the footing bearing elevation. The perimeter drain should be pitched to drain by gravity to the site storm drain system.

All grades must provide effective drainage away from the structures, during and after construction. Water ponding next to the structures can result in greater than calculated soil movement and differential floor slab settlement, cracked slab and wall movement or leaked roof. Effective drainage should be maintained during life time of the building.

Exposed ground should be sloped at a minimum 5 percent away from the structure for the at least 10 ft. beyond the perimeter of the structure. After the construction (building and landscape), we recommend final grades to be inspected for effective drainage. Grades of the around of the building should also be inspected periodically during life time of the building.

Planters located within 10 ft. of the structure should be self-contained to prevent water accessing the building and pavement subgrade soil (if any). Sprinkler main and spray heads should be located a minimum 5 ft. away from the building lines. Low volume, drip styled landscaped irrigation should

not be used near the building. Roof run off should be located in the drains or gutters. Roof drain and downspouts should discharge onto pavements that slope away from building/structures or the downspouts should extend a minimum of 10 ft. away from the structures.

4-9- Utility Trenches

Utility trenches should be properly backfilled. The pipes should be bedded on clean sands (Sand Equivalent greater than 30) to a depth of at least 1 foot over the pipe, and the bedding material must be inspected and approved in writing by a representative from our firm. The use of gravel is not acceptable unless used in conjunction with filter fabric to prevent the gravel from having direct contact with soil. The remainder of the trench backfill may be derived from onsite soil or approved import soil, compacted as necessary, until the required compaction is obtained as below:

Utility trenches should be backfilled with fill placed in lifts not exceeding 8 inches in uncompacted thickness. Native backfill materials should be compacted to at least 90 percent relative compaction and granular import material should be compacted to at least 95 percent relative compaction. These compaction recommendations assume a reasonable "cushion" layer around the pipes.

If imported granular soil is used, sufficient water should be added during the trench backfilling operations to prevent the soil from "bulking" during compaction.

5- Liquefaction Consideration

Liquefaction is a phenomenon in which loose, saturated, relatively cohesionless soil deposits lose shear strength during strong ground motions. Primary factors controlling liquefaction include intensity and duration of ground motion, gradation characteristics of the subsurface soils, in-situ stress conditions, and the depth to groundwater. Liquefaction is typified by a loss of shear strength in the liquefied layers due to rapid increases in pore water pressure generated by earthquake accelerations.

Liquefaction typically occurs in areas where the soils below the water table are composed of poorly consolidated, fine to medium-grained, primarily sandy soil. In addition to the requisite soil conditions, the ground acceleration and duration of the earthquake must also be of a sufficient level to induce liquefaction.

The project location on liquefaction map (Source CGS) site is not within liquefaction hazard zone, thus further study was not within the scope of services for this report.

6- Seismic Design Considerations

The details of USGS seismic design are presented in Exhibit IV.

7- Construction Considerations

7-1- General

The primary purpose of this section of the report is to comment on items related to excavation, earthwork and related geotechnical aspects of the proposed foundation design. It is written primarily for the engineer having responsibility of preparation for the plans and specifications of the foundation, but it may also aid personnel who monitor the construction. Prospective contractors for this project must evaluate construction problems on the basis of their experience on similar projects, taking into account their own construction methods and procedures.

7-2- Fill Materials

7-2-1- Compacted Structural Fill

The structural fill should be a well-graded granular material. Caltrans AB Class II is recommended to be used for this purpose with the following specifications.

Material	γd (pcf)	γ _{sat} (pcf)	c (ksf)	φ (degrees)
CALTRANS AB CLASS II (92% compacted)	125	130	0.1	38

 Table 10-CALTRANS AB Class II recommended parameters

Minimum 5 feet of the compacted backfill behind any wall is required for wall of 10' tall, shorter wall can have narrower backfill zone.

Imported structural fill should be used if the on-site excavated soils cannot meet the gradation requirements indicated above.

In addition to the above requirements, structural fill to be placed in the upper 3 ft. of filled areas during periods of wet and/or freezing weather should contain less than 5 percent passing the No. 200

sieve. Material proposed as structural fill should be tested and approved by a qualified geotechnical engineer prior to its use.

To evaluate the suitability and the quality of the fill source, we recommend that the laboratory testing of fill material be performed in accordance with the ASTM Test Methods indicated below.

Summary of ASTM Test Methods				
Test	ASTM Designation			
Moisture Content	D 2216			
Modified Proctor	D 1557			
Sieve Analysis	D 422			
Atterberg Limits	D 4318			

Table 11- Summary of ASTM Test Methods

Structural fill in unconfined areas should be placed in horizontal lifts not exceeding 9-in. in loose thickness and compacted to at least 95 percent of the laboratory maximum dry density, as determined by ASTM Test D 1557 (Modified Proctor). Structural fill should be moisture conditioned to within ± 2 percentage points of the optimum moisture content.

Structural fill should be compacted by self-propelled vibratory rollers or other approved compaction equipment. Where compaction occurs in confined areas, the loose lift thickness should be reduced to a maximum of 6 in. and compaction performed by hand-guided vibratory compactors or tampers.

Before placing fill materials, the exposed natural soil should be observed and proof rolled to identify any soft compressible layers. At the end of each day's operations, the last lift should be rolled by a smooth-wheel roller to eliminate ridges of un-compacted soil to aid runoff and drainage. No layer of fill should be placed until the underlying materials have been approved.

7-2-2- Common Fill

Common (non-structural) fill should consist of sandy or gravelly soil with a maximum particle size of 3 inches, with less than 35 percent passing the No. 200 sieve, and with a plasticity index of 20 or less.

7-3- Quality Control

Placement and compaction of all fill materials should be monitored and tested by a qualified technician under supervision of a professional geotechnical engineer. We recommend that all structural fill placements be tested in accordance with ASTM D2922 and D3017 (Nuclear Density Method) to verify the density, degree of compaction, and moisture content of the fill. The

specifications should call for frequent testing on each lift. In the event where any portion of the fill fails to meet the compaction requirements, the area should be reworked, re-compacted, and retested until the specified compaction is achieved.

8- Summary of Design recommendation

The site soil parameters need to be chosen from Table 9.

The in-fill soil back of any wall in contact with geogrid in general needs to be in compliance of section 7.2.

All the design methods and parameters including factor of safeties need to be followed per requirements of the engineer designing the structure. All the construction details are required to be per direction of the engineer designing the structure.

Drainage is required per detail and specs of footings.

All the deviations from this report needs to be brought to the attention of AEC as will be discussed in section 9.

Section 7.3 of this report and all the special inspection requirements mentioned in the report are required to be performed by AEC and needs to be identified on the cover sheet of the construction documents before being submitted to the authority having jurisdiction. The plans are required to be reviewed by AEC and be verified to be in compliance with the requirements of this report before being submitted to jurisdiction having authority.

9- Limitations

This Report was prepared pursuant to an Agreement dated 01/24/2020 between Mr. Ali Mozaffari (Alan Enterprise LLC) and AEC. All uses of this Report are subject to, and deemed acceptance of, the conditions and restrictions contained in the Agreement. The observations and conclusions described in this Report are based solely on the Scope of Services provided pursuant to the Agreement. AEC has not performed any additional observations, investigations, studies or other testing not specified in the Agreement and the Report. AEC shall not be liable for the existence of any condition the discovery of which would have required the performance of services not authorized under the Agreement.

This Report is prepared for the exclusive use Alan Enterprise LLC in connection with the design and construction of the mentioned development. There are no intended beneficiaries other than Alan Enterprise LLC AEC shall owe no duty, whatsoever, to any other person or entity on account of the

Agreement or the Report. Use of this Report by any person or entity other than Alan Enterprise LLC for any purpose whatsoever is expressly forbidden unless such other person or entity obtains written authorization from Alan Enterprise LLC and from AEC. Use of this Report by such other person or entity without the written authorization of Alan Enterprise LLC and AEC shall be at such other person's or entities sole risk, and shall be without legal exposure or liability to AEC.

Use of this Report by any person or entity, including by Alan Enterprise LLC for a purpose other than for the design and construction of the proposed development is expressly prohibited unless such person or entity obtains written authorization from AEC indicating that the Report is adequate for such other use. Use of this Report by any person or entity for such other purpose without written authorization by AEC shall be at such person's or entities sole risk and shall be without legal exposure or liability to AEC.

This report reflects site conditions observed and described by records available to AEC as of the date of report preparation. The passage of time may result in significant changes in site conditions, technology, or economic conditions which could alter the findings and/or recommendations of the report. Accordingly, Alan Enterprise LLC and any other party to whom the report is provided recognize and agree that AEC shall bear no liability for deviations from observed conditions or available records after the time of report preparation.

Use of this Report by any person or entity in violation of the restrictions expressed in this Report shall be deemed and accepted by the user as conclusive evidence that such use and the reliance placed on this Report, or any portions thereof, is unreasonable, and that the user accepts full and exclusive responsibility and liability for any losses, damages or other liability which may result.

10- References

- 1- 7.5' Series Geologic Map, USGS.
- 2- 7.5' Series Topographic Map, USGS.
- 3- ASTM test methods.
- 4- Department of the U.S. army corps of engineers Washington, DC 20314-1000, Engineering and design geotechnical investigations, Manual No. 1110-1-1804.
- 5- Fault activity map of California, CGS, 2010.
- 6- Foundation analysis and design, Joseph E. Bowles, McGraw-Hill, fifth edition.
- 7- Liquefaction map, USGS.

- 8- Landslide map, USGS.
- 9- Minnesota Department of Transportation, Pavement Design, 2007.
- 10- Swiss Standard SN 670 010b, Characteristic Coefficients of soils, Association of Swiss Road and Traffic Engineers.
- 11- Quaternary Fault and Fold Database of the United States.

Exhibit I Boring Log

EXPLORATORY BORING LOG					Project No: 4134					Borehole No. : B1				
Address: Cupertino Company Drilling: AEC Drilling Corp.				Test Date : 2/4/2020 BORING DIA.:					Logged By : Nami					
Company Drilling: AEC Drilling Corp.					BORING DIA.: SPT SPT				BORING ELEV.:					
LOACATION OF BOREHOLE : Specified on Plan				SA	MPL	ER:	C2 :cal. 2" C2.5 :cal. 2.5"			Weather:		:	Sunny	
Notes:	SOIL TYPE	H (feet)	E	BLOWS PER FOOT		POCKET PEN. (tsf)	DRY DENSITY (pcf)	MOIST. CONT. (%)		S (%)	GRAVELS (%)	LIQUID LIMIT	PLASTICITY INDEX	
Description:	USCS :	DEPTH (feet)	SAMPLE	BLOW	N-SPT	POCK	DRY D	MOIST	FINES (%)	SANDS (%)	GRAVI	LIQUID	PLAST	
0.0 - 7 ft Brown clayey sand with gravel (SC) - Damp - Particle is angular with elongated shape and gravel maximum size - None reaction with HCL - Hard to very hard consistency - Strong cementation - Blocky structure - None dilatancy - Low to none dry strength - High toughness - Non plastic - Very dense.		_ 1 _ _ 2 _ _ 3 _ _ 4 _ _ 5 _ _ 6 _ 7	C2.5	40 49 53 58 67 73	66 91		122.2	11.0	32.9	44.3	22.8	23.9	9.0	
Refusal depth at 7 ft No underground water encountered														

EXPLORATORY BORING LOG					Project No: 4134				Borehole No. : B2					
Address: Cupertino Company Drilling: AEC Drilling Corp.				Test Date : 2/4/2020 BORING DIA.:				Logged By : Nami BORING ELEV.:						
				SPT SPT				BORING ELEV.:						
LOACATION OF BOREHOLE : Specified on Plan					MPLI	ER:	C2 :cal. 2" C2.5 :cal. 2.5"			Weather:		:	Sunny	
Notes:	SOIL TYPE	DEPTH (feet)	LE	BLOWS PER FOOT		POCKET PEN. (tsf)	DRY DENSITY (pcf)	MOIST. CONT. (%)		S (%)	GRAVELS (%)	LIQUID LIMIT	PLASTICITY INDEX	
Description:	nscs	DEPTH	SAMPLE	BLOW	N-SPT	POCKI	рку р	MOIST	FINES (%)	SANDS (%)	GRAVI	LIQUIE	PLAST	
0.0 - 4 ft Brown to light brown sandy lean clay (CL) Wet - Maximum particle size is cobble and angular with elongated shape - No odor - None reaction with HCL-Hard consistency Strong cementation - Blocky structure - None dilatancy - None dry strength - High Toughness - None plastic - Stiff.		_ 1 _ _ 2 _ _ 3 _ _ 4 _	C2.5	7 11 12	15	>4.5	107.4	9.0 10 11.0	54.2	36.3	9.5	22.8	9.5	
4.0 - 8.0 ft Same as above but hard.		_ ⁵ _	C2.5	44 68 73	92	>4.5	116.5							
Refusal depth at 8 ft No underground water encountered														

Exhibit II Lab Results

Moisture Density (AASHTO T265 - ASTM D2216)

Report Date:	2/17/2020
Project No:	4134
Project Name:	Alan
Project Address:	Cupertino
Technician:	Nami

_

Type of Material:	Soil	Sample Description:	
Source:	Field		
Sampled by:	Nami	Sample Date: 2/4/2020	

Sample No:	B1 1'- 2'	B1 2'-3.5'	B1 4'-5'	B1 5'-6.5'	
Ht. of Sample:	Disturbed	6.00	Disturbed	6.00	
Tare No:	CA - 17	CA - 10	CA - 5	CA - 14	
Gross Wet Wt:	1057.69	1255.72	1270.78	1241.74	
Gross Dry Wt:	977.95	1167.76	1174.42	1152.29	
Tare Wt:	309.93	315.16	313.25	310.13	
Net Dry Wt:	668.02	852.60	861.17	842.16	
Wt. of Water:	79.74	87.96	96.36	89.45	
% Moisture	12%	10%	11%	11%	
Liners Dia		2.5"		2.5"	
Density Factors		0.860		0.860	
Dry Density		122.21		120.71	

Tested By: Nami

Reviewed E A.F

Signature:

Signature:

Moisture Density (AASHTO T265 - ASTM D2216)

Report Date:	2/17/2020
Project No:	4134
Project Name:	Alan
Project Address:	Cupertino
Technician:	Nami

_

Type of Material:	Soil	Sample Description:
Source:	Field	
Sampled by:	Nami	Sample Date: 2/4/2020

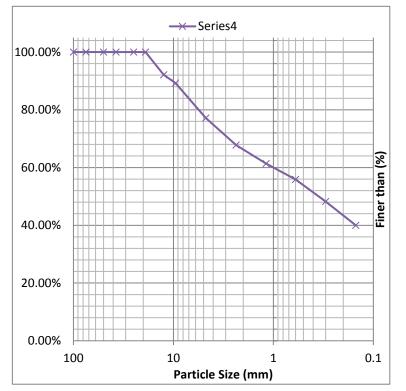
Sample No:	B2 1'- 2'	B2 2'-3.5'	B2 4'-5'	B2 5'-6.5'	
Ht. of Sample:	Disturbed	6.00	Disturbed	6.00	
Tare No:	CA - 2	CA - 3	CA - 6	CA - 15	
Gross Wet Wt:	1221.66	1139.35	1328.28	1217.07	
Gross Dry Wt:	1144.92	1060.98	1224.34	1123.01	
Tare Wt:	311.43	311.66	311.80	309.96	
Net Dry Wt:	833.49	749.32	912.54	813.05	
Wt. of Water:	76.74	78.37	103.94	94.06	
% Moisture	9%	10%	11%	12%	
Liners Dia		2.5"		2.5"	
Density Factors		0.860		0.860	
Dry Density		107.40		116.54	

Tested By: Nami

Reviewed E A.F

Signature:

Signature:


SIEVE ANALYSIS SHEET (AASHTO T27-ASTM C136 and D6913)

Borehole Number and Depth:
Nominal Max. Size in sample =
Min. Test Sample size in kg [lb] =
Nominal Dimension of seive =

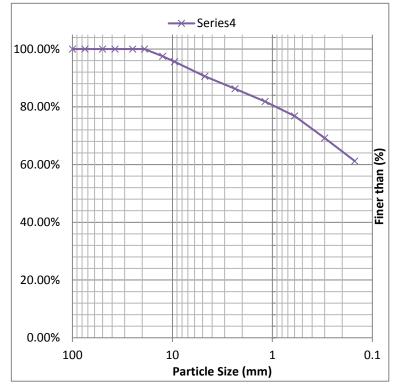
<u>B1 2' - 3.5'</u>
1/2"
2 [4]
8"

	Sieve Size	Sieve Size	Wt. Ret. (gr)	% Ret.	% Passing	Retained Limit (kg)
4	100mm	4″	0	0.00%	100.00%	
3	75mm	3″	0	0.00%	100.00%	
2	50mm	2″	0	0.00%	100.00%	
1	37.5mm	1 ½"	0	0.00%	100.00%	
1	25mm	1″	0	0.00%	100.00%	
1	19mm	3∕4″	0	0.00%	100.00%	
0	12.5mm	1⁄2"	23.15	7.87%	92.13%	
0	9.5mm	3/8"	8.56	2.91%	89.21%	
0	4.75mm	#4	35.44	12.06%	77.16%	
0	2.36mm	#8	27.6	9.39%	67.77%	
0	1.18mm	#16	18.9	6.43%	61.34%	
0	600µm	#30	16.07	5.47%	55.87%	
0	300µm	#50	22.47	7.64%	48.23%	
0	150µm	#100	24.18	8.23%	40.00%	
0	75µm	#200	21.01	7.15%	32.86%	
				l		

100

Date:	2/20/2020
Project No.:	4134
Project Name:	Alan
Project Address:	Cupertino
Tested By:	Nami
Material:	Soil
Pan #:	CA - 10
Pan weight (gr):	315.16
Mass of pan & dried sample	
before wash (gr):	609.13
Original mass before wash (gr):	293.97
Min. readability of scale (gr) =	0.29
Mass of pan & dried sample	
after wash (gr):	512.6
Mass of sample after wash & being dried (gr):	
Mass after mechanical shake (gr):	197.38
Percent of Gravel =	22.84%
Fine Content =	32.86%
Percent of Sand =	44.30%
D ₁₀ (mm)=	
$D_{30} (mm) =$	
$D_{60} (mm) =$	
$D_{50} (mm) =$	0.3695
Cc=	13.8
Cu=	0.1
Check for waste limt (0.3%):	0.03%

| Form # L-20 | Date Prepared: 10/20/2014 | Revised: 10/22/2018 | Revision #: 5 | 2455 Autumnvale Drive, Unit E | San Jose, CA 95131 | Tel: 408-217-9174 | Fax: 408-217-9632 www.achieveng.com


SIEVE ANALYSIS SHEET (AASHTO T27-ASTM C136 and D6913)

Borehole Number and Depth:
Nominal Max. Size in sample =
Min. Test Sample size in kg [lb] =
Nominal Dimension of seive =

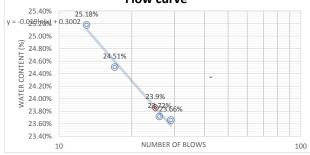
B2 2' - 3.5'
1/2"
2 [4]
8"

Sieve Size	Sieve Size	Wt. Ret. (gr)	% Ret.	% Passing	Retained Limit (kg)
4 100mm	4"	0	0.00%	100.00%	
3 75mm	3″	0	0.00%	100.00%	
2 50mm	2″	0	0.00%	100.00%	
¹ 37.5mm	1 ½"	0	0.00%	100.00%	
1 25mm	1″	0	0.00%	100.00%	
1 19mm	3⁄4"	0	0.00%	100.00%	
0 12.5mm	1⁄2"	7.43	2.49%	97.51%	
0 9.5mm	3/8"	5.59	1.87%	95.64%	
0 4.75mm	#4	15.17	5.09%	90.55%	
0 2.36mm	#8	12.91	4.33%	86.22%	
0 1.18mm	#16	13.15	4.41%	81.81%	
0 600µm	#30	14.83	4.97%	76.84%	
0 300µm	#50	22.92	7.68%	69.16%	
0 150µm	#100	23.68	7.94%	61.22%	
0 75µm	#200	20.87	7.00%	54.23%	

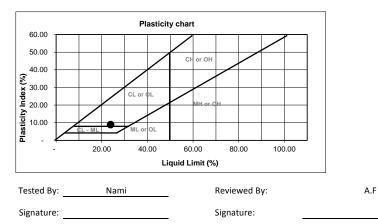
100

Date:	2/20/2020
Project No.:	4134
Project Name:	Alan
Project Address:	Cupertino
Tested By:	Nami
Material:	Soil
Pan #:	CA - 3
Pan weight (gr):	311.66
Mass of pan & dried sample	
before wash (gr):	609.98
Original mass before wash (gr):	298.32
Min. readability of scale (gr) =	0.30
Mass of pan & dried sample	
after wash (gr):	448 3
	110.5
Mass of sample after wash &	
being dried (gr):	136.64
Mass after mechanical shake (gr):	136.55
Percent of Gravel =	9.45%
Fine Content =	54.23%
Percent of Sand =	36.32%
$D_{10} (mm) =$	
$D_{30} (mm) =$	
$D_{60} (mm) =$	
$D_{50} (mm) =$	0.0750
Cc=	1.8
Cu=	0.5
Check for waste limt (0.3%):	0.07%

[|] Form # L-20 | Date Prepared: 10/20/2014 | Revised: 10/22/2018 | Revision #: 5 | 2455 Autumnvale Drive, Unit E | San Jose, CA 95131 | Tel: 408-217-9174 | Fax: 408-217-9632 www.achieveng.com



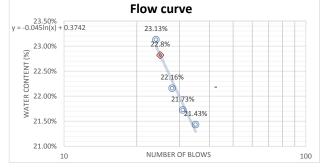
Atterberg Limits (AASHTO T89 and T90 - ASTM D4318)


Sample Description:	SOIL	Report Date:	2/28/2020
Boring No:	B1	Project No:	4134
Sample ID:	228204134	Project Name:	Alan
Sample Depth:	2' - 3.5'	Project Address:	Cupertino
Material:	SOIL	Technician:	Nami

	Liquid Lin	Liquid Limit			Plastic Limit		
	1	2	3	4	1	2	3
No. of blows	29	26	17	13			
Tare No.	AB - 2	LB - 6	AE - 2	AD - 1	LB - 8	AC - 2	AD - 2
Gross Wet Weight (gr)	20.63	23.33	23.90	21.82	5.42	5.21	5.38
Gross Dry Weight (gr)	18.82	21.02	21.42	19.69	5.29	5.08	5.25
Tare Weight (gr)	11.17	11.28	11.30	11.23	4.35	4.27	4.37
Net Dry Weight (gr)	7.65	9.74	10.12	8.46	0.94	0.81	0.88
Weight of Water (gr)	1.81	2.31	2.48	2.13	0.13	0.13	0.13
Water Content (%)	23.66%	23.72%	24.51%	25.18%	13.83%	16.05%	14.77%

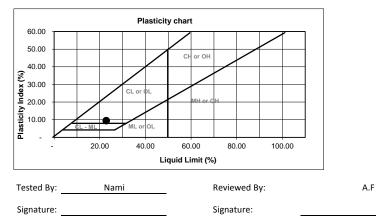
Flow curve

Shrinkage Limit Results			
Liquid Limit	23.86		
Plastic Limit	14.88		
Plasticity Index		8.97	
Shrinkage Limit %			
B – Value			
Toughness I	ndex		

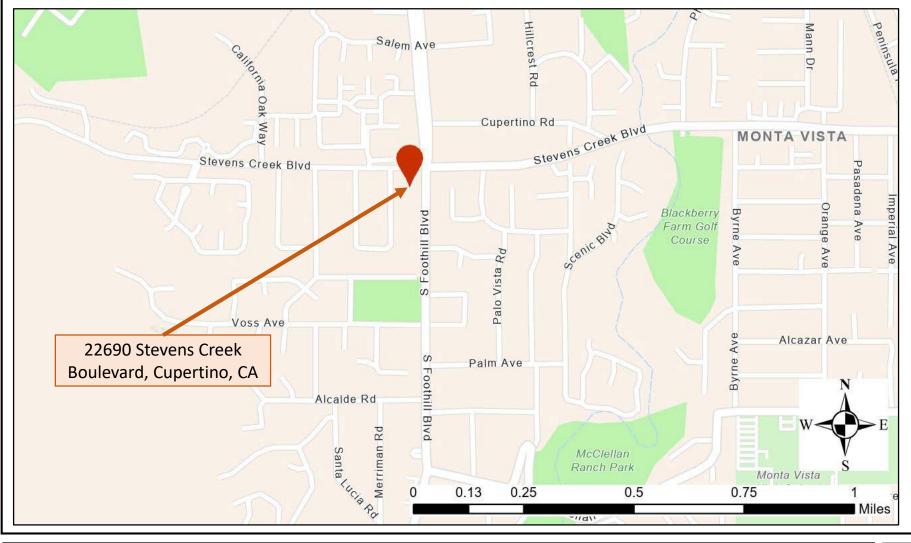

Group Symbol CL

Atterberg Limits (AASHTO T89 and T90 - ASTM D4318)

Sample Description:	SOIL	Report Date:	2/28/2020	
Boring No:	B2	Project No:	4134	
Sample ID:	22820 -4134	Project Name:	Alan	
Sample Depth:	2' - 3.5'	Project Address:	Cupertino	
Material:	SOIL	Technician:	Nami	

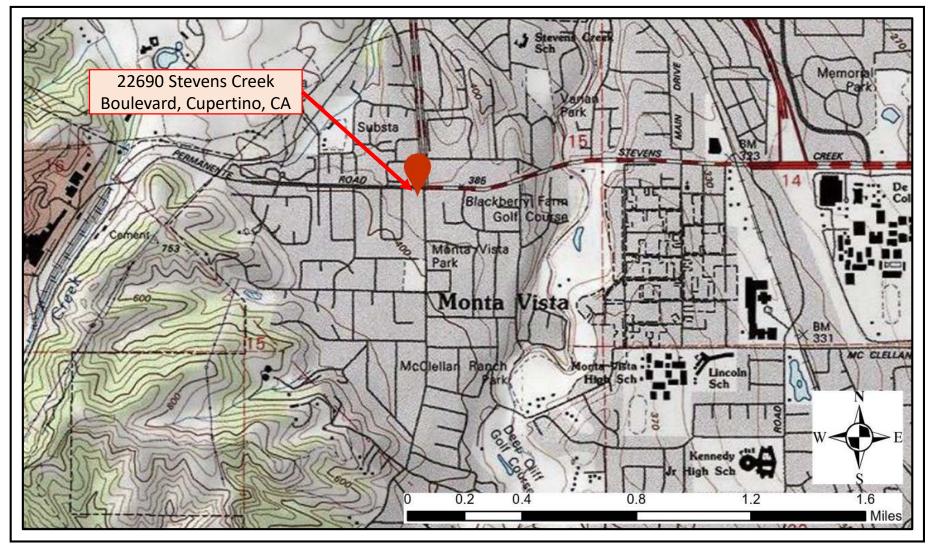

	Liquid Lin	Liquid Limit			Plastic Limit		
	1	2	3	4	1	2	3
No. of blows	35	31	28	24			
Tare No.	AL - 2	AE - 3	AD - 2	LB - 1	L - 3	AC - 3	AE - 6
Gross Wet Weight (gr)	24.86	22.92	24.38	23.76	5.45	5.48	5.82
Gross Dry Weight (gr)	22.44	20.83	22.00	21.41	5.32	5.34	5.66
Tare Weight (gr)	11.15	11.21	11.26	11.25	4.32	4.36	4.39
Net Dry Weight (gr)	11.29	9.62	10.74	10.16	1	0.98	1.27
Weight of Water (gr)	2.42	2.09	2.38	2.35	0.13	0.14	0.16
Water Content (%)	21.43%	21.73%	22.16%	23.13%	13.00%	14.29%	12.60%

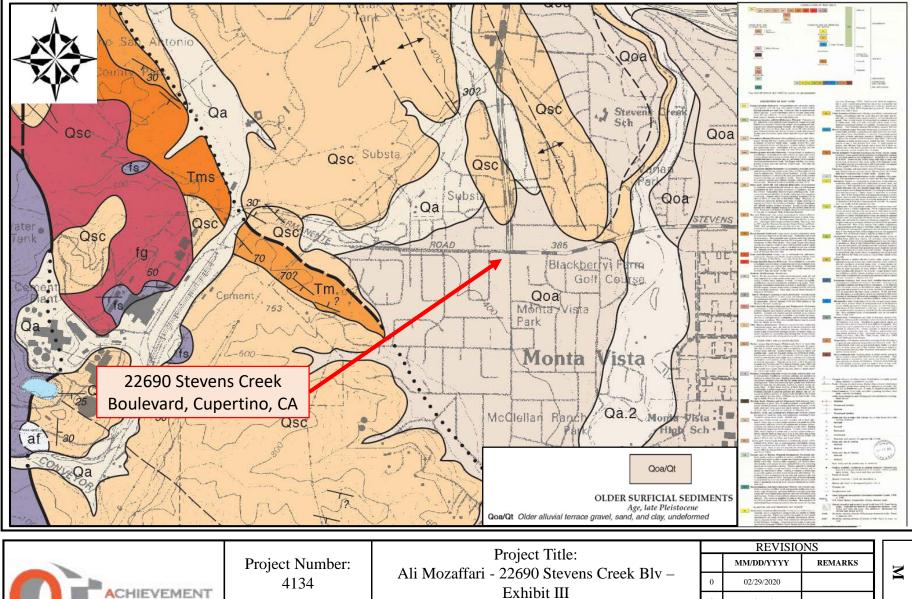
Group Symbol	
--------------	--

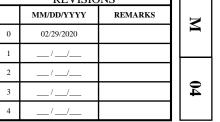

Shrinkage Limit Results						
Liquid Limit	22.82					
Plastic Limit %		13.29				
Plasticity Index		9.53				
Shrinkage Li						
B – Value						
Toughness Index						

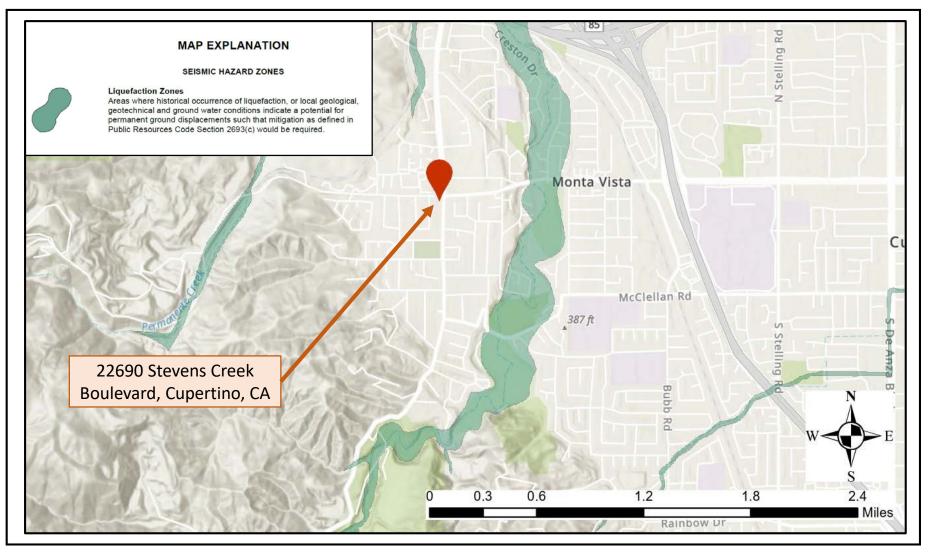
CL

|Form #L-21 | Date Prepared: | Rev #2 | Revised: 05/26/2018 | 2455 Autumnvale Drive, Unit E | San Jose, CA 95131 | Tel: (408) 217-9174 | Fax: (408) 217-9632 www.achieveng.com

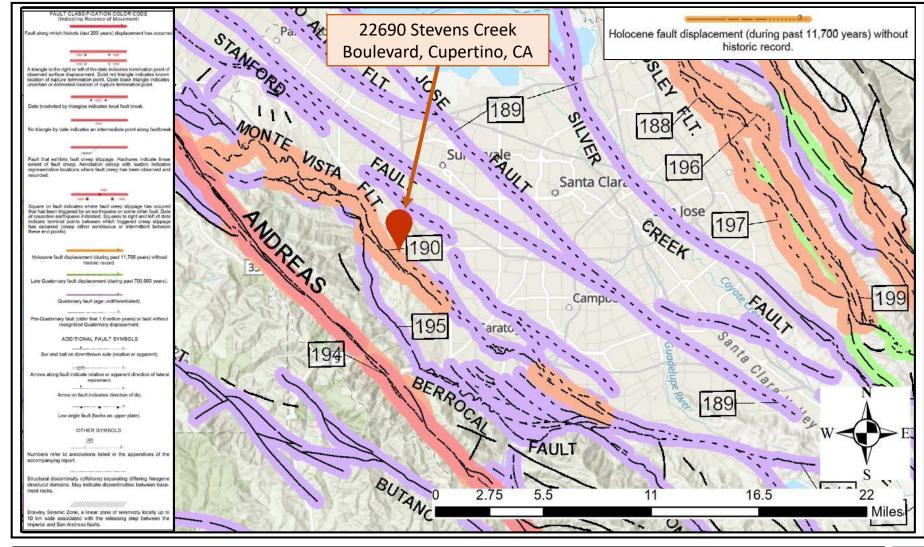

Exhibit III Maps


ACHIEVEMENT ENGINEERING CORP.	Project Title: 4134 Project Title: Ali Mozaffari - 22690 Stevens Creek Blv – Exhibit III	REVISIONS				
		5		MM/DD/YYYY	REMARKS	
		0	02/29/2020			
		1	//			
			2	//		
	Vicinity Map	3	//		1	
			4	//		

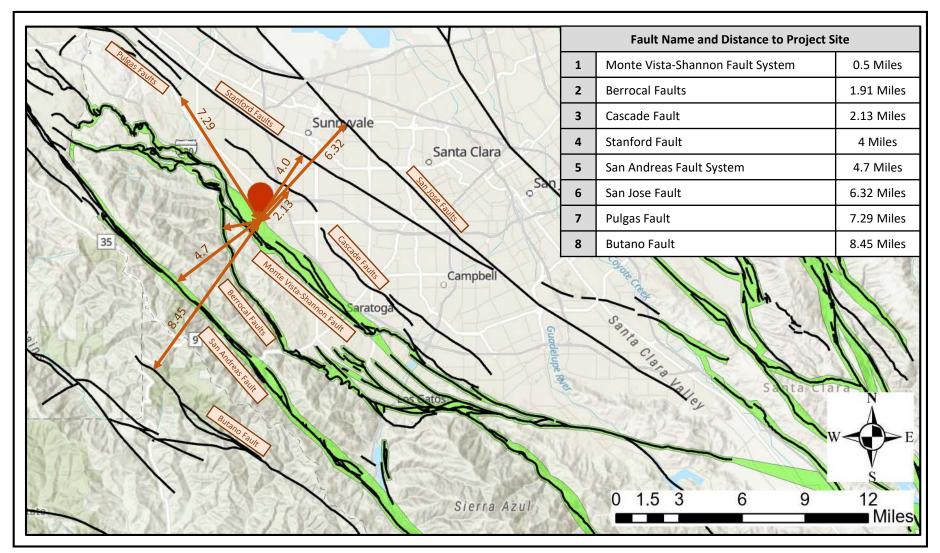

		Droject Title		REVISIO	NS	
	Project Number:	Project Title:		MM/DD/YYYY	REMARKS	
ACHIEVEMENT ENGINEERING CORP.	4134 Ali Mozaffari - 22690 Stevens Creek Blv – Exhibit III	0	02/29/2020			
		Exhibit III	1	/		
			2	//		
	Boring Location Map	3	/		02	
			4	/		

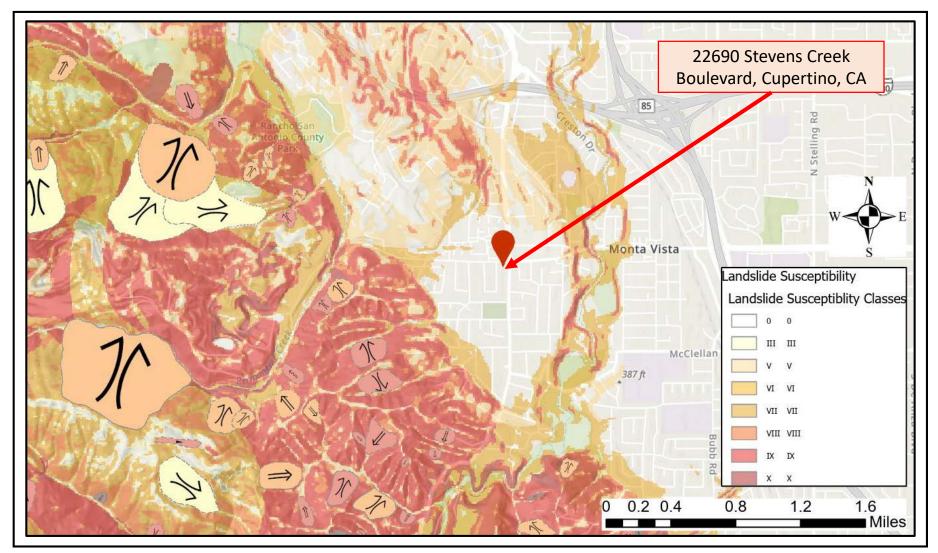


		Drojost Titler		REVISIO	NS		
	Project Number:	Project Title:		MM/DD/YYYY	REMARKS		-
ACHIEVEMENT ENGINEERING CORP.	4134 Ali Mozaffari - 22690 Stevens Creek Blv – 0 Exhibit III	0	02/29/2020				
		1	//			_	
	Site Location on 7.5' quadrangle Series Topographical Map by USGS		2	//			
			3	//		03	3
	1	Topographical Map by 0505		//			



ENGINEERING		L'
CORP.	Site Location on 7.5' quadrangle Series	2
	Geological Map by USGS	3
	Ocological Map by 0505	4



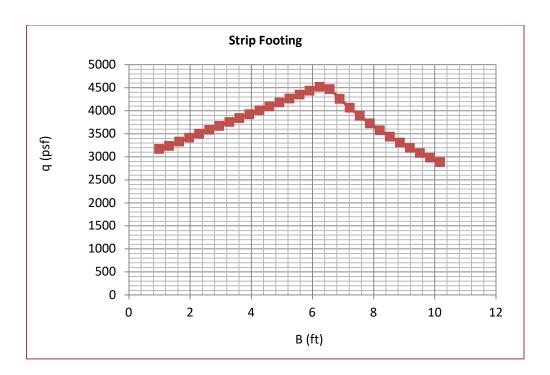

		Drainat Titla	REVISIO		NS	
	Project Number:	Project Title:		MM/DD/YYYY	REMARKS	
ACHIEVEMENT ENGINEERING CORP.	4134 Ali Mozaffari - 22690 Stevens Creek Blv – Exhibit III	0	02/29/2020			
		1	//			
	Site Location on State Map for Earthquake Zone of required investigation by CGS (site is NOT located within hazard zone)		2	/		
			3	//		05
	investigation by v	y COS (she is NOT located within hazard zone)		//		

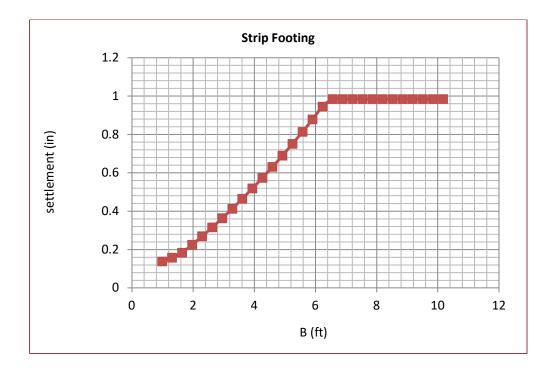
	During Title		REVISIONS		NS	
	Project Number:	Project Title:		MM/DD/YYYY	REMARKS	
	4134	Ali Mozaffari - 22690 Stevens Creek Blv –	0	02/29/2020		
ACHIEVEMENT ENGINEERING CORP.	Exhibit III	1	//			
	Site Location on Fault Activity Map of California (2010) by CGS		2	//		
			3	//		6
		or Camorina (2010) by COS		//		

	Durgingst Titles		Drojast Title		REVISIO	NS		٦
	Project Number:	Project Title:		MM/DD/YYYY	REMARKS			
ACHIEVEMENT ENGINEERING CORP.	4134	All Mozaffari - 22690 Stevens Creek Blv –	0	02/29/2020				
	Exhibit III	1	//					
	Site Location distance to Nears Faults (10-mile Radius)		2	//				
			3	//		07		
		(10-mile Radius)		//				

	Drojost Titler			REVISIO	NS		
	Project Number: 4134 Ali Mozaffari - 22690 Stevens Creek Blv – Exhibit III	Project Number: Project Title:		MM/DD/YYYY	REMARKS		
ACHIEVEMENT ENGINEERING CORP.		0	02/29/2020				
		1	//				
	Project Location on Landslide Susceptibility Map (Source USGS) site is within Class 0 – No Susceptibility		2	//			
			3	//		80	
			4	/			

Exhibit IV USGS Seismic Design


4134


22690 Stevens Creek Blvd, Cupertino, CA 95014, USA

Latitude, Longitude: 37.3217554, -122.068922

	Majestic Oak Wa	Cupertino Rd				
St evens Cro	on ^{ebi} idge ^{eek Blvd} Monta Vista	Development Is Child's Play Fire Station				
Vi	olin Studios 😜	Prado Vista Dr Prado Vista Dr Prado Vista Dr Map data ©2021				
Date		2/13/2020, 2:11:29 PM				
Design	Code Reference Document	ASCE7-16				
Risk Ca		II				
Site Cla	SS	D - Stiff Soil				
Туре	Value	Description				
SS	2.281	MCE _R ground motion. (for 0.2 second period)				
S ₁	0.821	MCE _R ground motion. (for 1.0s period)				
S _{MS}	2.281	Site-modified spectral acceleration value				
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value				
S _{DS}	1.521	Numeric seismic design value at 0.2 second SA				
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA				
Туре	Value	Description				
SDC	null -See Section 11.4.8	Seismic design category				
Fa	1	Site amplification factor at 0.2 second				
Fv	null -See Section 11.4.8	Site amplification factor at 1.0 second				
PGA	0.943	MCE _G peak ground acceleration				
F _{PGA}	1.1	Site amplification factor at PGA				
PGA _M	1.037	Site modified peak ground acceleration				
TL	12	Long-period transition period in seconds				
SsRT	2.335	Probabilistic risk-targeted ground motion. (0.2 second)				
SsUH	2.573	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration				
SsD	2.281	Factored deterministic acceleration value. (0.2 second)				
S1RT	0.941	Probabilistic risk-targeted ground motion. (1.0 second)				
S1UH	1.054	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.				
S1D	0.821	Factored deterministic acceleration value. (1.0 second)				
PGAd	0.943	Factored deterministic acceleration value. (Peak Ground Acceleration)				
C _{RS}	0.907	Mapped value of the risk coefficient at short periods				
C _{R1}	0.893	Mapped value of the risk coefficient at a period of 1 s				

Exhibit V Shallow Footing Design

Project Number: 4134 Date: March 25, 2020

Mr. Ali Mozaffari 22690 Stevens Creek Cupertino, CA 95014

Subject: Addendum to Geotechnical Report (Pavement Design) for the New Development at 22690 Stevens Creek Cupertino, CA 95014 APN#342-14-104

Dear Sir,

In response to your inquiry, and your authorization, the following professional services were provided:

- Two sets of CBR test (ASTM D1383) have been performed on selected samples collected from the site (Please refer to the attached test results).
- Recommendations for pavement design and pedestrian concrete sidewalk.

Pavement Design and Pedestrian Rigid Concrete Sidewalk Recommendations

As previously discussed, two sets of CBR tests (per ASTM D1383) have been performed for two surficial samples collected from the Site. California Bearing Ratio (CBR) test results indicated that near surface soils have an average CBR value of approximately 1.4 that is classified as poor subgrade per Reference 1. Based on the correlations between CBR and MR (Resilient Modulus) per Reference 2, the corresponding MR and California R-Value for the surficial soil at the Site are 2025 psi and 3, respectively. The soil classification test shows the surface soil of the site is SC /CL, in Unified Soil Classification System.

Subgrade Preparation

Remove all debris, large rocks, vegetation and topsoil from the area to be paved. These items either do not compact well or cause non-uniform compaction and mat thickness.

It is recommended that the poor soil undergo subgrade treatment or replacement before placing aggregate and asphalt. For more information on subgrade treatments refer to Chapter 4.0 of Reference 1.

Form #: R-15, V-I, C-II, S-8	Date Prepared: 7/29/2014	Revision No.: 1	Revised: 11/26/2014

The subgrade should be compacted to a minimum of 95 percent of the maximum dry density as determined by ASTM D1557 to ensure the compacted subgrade is able to support construction traffic. If the subgrade ruts excessively under construction traffic, it should be repaired before being paved over. Left unrepaired subgrade ruts may reflectively cause premature pavement rutting.

It is recommended that a representative from our firm be present at the site and observe the integrity of the subgrade during the construction. In case the poor soil is present or unsuitable materials are encountered as predicted, the subgrade may require stabilization (such as lime treatment), overexcavation (and replacing the unsuitable soil with gravel borrows) and adding a base course and perhaps a subbase course over the subgrade, that proper methods will be recommended if needed during construction observation.

After final grading (often called fine-grading), the subgrade elevation should generally conform closely to the construction plan subgrade elevation. Large elevation discrepancies should not be compensated for by varying pavement or base thickness because hot mix asphalt (HMA) and aggregates are more expensive than subgrade.

Rigid Concrete Pavement Recommendation for a TI (Traffic Index) below 9

Utilizing the Reference 3 rigid pavement catalog decision tree, the site surface soil is classified as Type II of subgrade and the Site is located in Caltrans Pavement Climate Region of Central Coast. Thus, the recommended rigid pavement structural depth for $TI \le 9$, with lateral support is 0.70 ft. doweled JPCP (Jointed Plain Concrete Pavement) or 1.00 ft. AB (Class 2 Aggregate Base) and for the case without lateral support is 0.75 ft. doweled JPCP or 1.00 ft. AB and the (Table 623.1E, Reference 3).

AC (Asphalt Concrete) pavement recommendations for a TI of 5, 6 and 7

Considerations regarding worker safety, short construction windows, or the amount of area to be paved may make it desirable to reduce the total thickness of the pavement by placing full depth hot mix asphalt (HMA). Also, full depth hot mix asphalt is less affected by moisture or frost, does not allow moisture build up in the subgrade, provides no permeable layers that entrap water, and has a more uniform pavement structure. In this step of design, assuming a full depth HMA for pavement and using the Reference 3, the recommendation for AC pavement structural depth has been summarized in the table below.

Form #: R-15, V-I, C-II, S-8	Date Prepared: 7/29/2014	Revision No.: 1	Revised: 11/26/2014

ΤI	GE	HMA Thickness (ft.)
	$^{1}(ft.)$	
5	1.6	0.60
6	2.0	0.75
7	2.3	0.90

Table 1- Recommended AC pavement structural depth

1) Gravel Equivalent in ft.

Proper mix of AC with Performance Grade for climate region of Central Coast can be used for full depth pavement (please refer to Table 632.1 of Reference 3).

Please note that the thicknesses determined and outlined in this section, are not intended to preclude other combinations and thicknesses of materials. Adjustments to the thickness of the various materials may be made to accommodate construction restrictions or practices, and minimize costs, provided the minimum thicknesses, maximum thicknesses, and minimum GE requirements (including safety factors) of the entire pavement structure and each layer are as specified and the contractor can modify them based on credible references as the project progresses and more data will be available (Per Reference 3).

It is our pleasure to provide you our professional services. If you have any question or need any additional information, please do not hesitate to call us at your convenience.

Sincerely Yours,

Sadaf M. Safaai P.E. State of California Licensed Civil Engineer

Reference

- 1- Asphalt Paving Design Guide, Asphalt Pavement Association of Oregon, Revised October 2003.
- 2- FHWA, Geotechnical Aspects of Pavements Reference Manual / Participant Workbook, Publication No. FHWA NHI-05-037, May 2006.
- 3- California Department of Transportation, Highway Design Manual, Sixth Edition, 2017.

Form #: R-15, V-I, C-II, S-8	Date Prepared: 7/29/2014	Revision No.: 1	Revised: 11/26/2014
------------------------------	--------------------------	-----------------	---------------------

CBR Test Result

Alan Enterprise LLc # 4134

C B R 1

ACHIEVEMENT ASTM: D 1883 - AASHTO: T193-99

Report Date:	3/23/2020	AEC Project#:	4	134
*Client:	Alan Enterprise	Sample No.:	CE	3R1-1
Report ID:	032320 - 41	.34 - L50 - NH	Page #:	1
*Project Address:	Cupertino			

		Densit	y Data	
Condition of specimen		Before S	oaking	After Soaking
Wt. of Compacted Sample,		25.0	10	25.054
Mold and Base Plate, (Lb)		25.8	48	25.951
Wt. of Mold and Base Plate, ((Lb)	15.8	3	
Wt. of Sample, (Lb)		10.0	18	
Height of Speciment, (in3)		4.5	9	
Vol. of Specimen, (in3)		6		
Moisture Content, (%)		12		
Dry Density, (Lbs/C.F)		126.		
			Determination	
Surcharge Weight, (Lb)	1	LO	Expansion Ratio) (ER):
Initial Height of Specimen, (ir	ר) 4.	.59		
Initial Dial Gauge Reading, (ir	ו)	0	(0.0	022) 0.470
Final Dial Gauge Reading, (in)) 0.0	022	$ER = \left(\frac{1}{4} \right)$	$\left(\frac{022}{.59}\right) = 0.479$
Difference, (in)	0.0	022	X	,
		Water Co	ntent Data	
Sample Condition:		before S	oaking	After Soaking
Sample No		CBR1-1		
Tare No		CA -	19	
Gross wet weight		589.	15	
Gross Dry Weight		562.	13	
Tare Weight		336.	93	
Net Dry weight		225	.2	
Weight of Water		27.0)2	
Moisture (%)		12		
Remark:				
Tested by (Name / Initial):	Nami	NH	Signature:	

 Form#: L-50
 Date Prepared: 02/11/2019
 Revision No: 1
 Revised: 04/06/2019

 2455
 A transmission
 CA 05121
 Table (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 247
 0522
 (400)
 (400)
 247
 0522
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)
 (400)

VEMENT ASTM: D 1883 - AASHTO: T193-99

Report Date:	3/23/2020	AEC Project#:	4	134
*Client:	Alan Enterprise	Sample No.:	CE	3R1-2
Report ID:	032320 - 4134 - L50 - NH		Page #:	2
*Project Address:	Cupertino			

		Densi	y Data	
Condition of specimen		Before S		After Soaking
Wt. of Compacted Sample,			,	
Mold and Base Plate, (Lb)		26.0	19	25.951
Wt. of Mold and Base Plate	. (Lb)	15.8	66	
Wt. of Sample, (Lb)	/ (=~)	10.1		
Height of Speciment, (in3)		4.5		
Vol. of Specimen, (in3)		6		
Moisture Content, (%)		12		
Dry Density, (Lbs/C.F)		126.	72	
	Expan	sion Ratio	Determination	
Surcharge Weight, (Lb)	1	10	Expansion Ratio) (ER):
Initial Height of Specimen,	(in) 4.	.59		
Initial Dial Gauge Reading, (in)	0	/0.0	022)
Final Dial Gauge Reading, (i	n) 0.0	022	$ER = \left(\frac{1}{4} \right)$	$\left(\frac{022}{59}\right) = 0.479$
Difference, (in)	0.0	022	X	/
		Water Co	ntent Data	
Sample Condition:		before S		After Soaking
Sample No		CBR1-2		
Tare No		CA -	22	
Gross wet weight		535.	63	
Gross Dry Weight		514.	41	
Tare Weight		336.	73	
Net Dry weight		177.	68	
Weight of Water		21.2	2	
Moisture (%)		12		
Remark:				
Tested by (Name / Initial):	Nami	NH	Signature:	
$Form#: L_50$	Data Proparad: 02/11/2	0010	Povision No. 1	Povisod: 01/06/2010

,, ,	-		0		
Form#: L-50	Date Prepared: 02/11/20	19	Revision No: 1	Revised: 04/06/2019	

ACHIEVEMENT ASTM: D 1883 - AASHTO: T193-99

Report Date:	3/23/2020	AEC Project#:	4	134
*Client:	Alan Enterprise	Sample No.:	CE	3R1-3
Report ID:	032320 - 41	.34 - L50 - NH	Page #:	3
*Project Address:	Cupertino			

		Densit	y Data	
Condition of specimen		Before S		After Soaking
Wt. of Compacted Sample,			-	
Mold and Base Plate, (Lb)		25.94	49	26.028
Wt. of Mold and Base Plate,	(Lb)	15.7	92	
Wt. of Sample, (Lb)		10.1	57	
Height of Speciment, (in3)		4.5	9	
Vol. of Specimen, (in3)		6		
Moisture Content, (%)		12		
Dry Density, (Lbs/C.F)		126.		
			Determination	
Surcharge Weight, (Lb)		10	Expansion Ratio) (ER):
Initial Height of Specimen, (i	n) 4	.59		
Initial Dial Gauge Reading, (i	n)	0	(0.0	022)
Final Dial Gauge Reading, (in) 0.	022	$ER = \left(\frac{1}{4} \right)$	$\left(\frac{022}{59}\right) = 0.479$
Difference, (in)		022	X	
		Water Co	ntent Data	
Sample Condition:		before So	oaking	After Soaking
Sample No		CBR1	-3	
Tare No		CA	21	
Gross wet weight		526.	28	
Gross Dry Weight		505.	99	
Tare Weight		337.	93	
Net Dry weight		168.	06	
Weight of Water		20.2	9	
Moisture (%)		12		
Remark:				
Tested by (Name / Initial):	Nami	NH	Signature:	

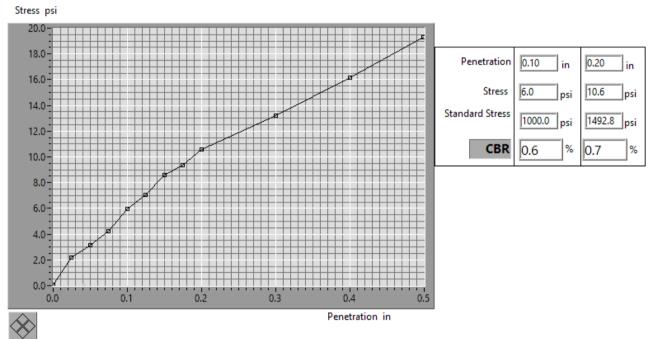
Tested by (Name / Initial):	INdIIII		Signature:	
Form#: L-50	Date Prepared: 02/11/20	19	Revision No: 1	Revised: 04/06/2019

Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR1-1	Sample	CBR1-1

Test Details				
Standard	ASTM D1883-99 / AASHTO T193-98			
Sample Type	Bulk disturbed sample			
Sample Description	Silty Sand			
Location	Cupertino			
Variations from Procedure	None			

Specimen & Equipment Details					
Specimen Reference	А	Method of Sample Preparation	ASTM D 1883		
Diameter	6.0000 in				
Height	4.5900 in				
Dry Density before Soak	1.91 lb/ft3	Dry Density after Soak	1.91 lb/ft3		
Surcharge Weight	10.0000 lb	Comments			
Moisture Content					
Before Compaction	1.00 %	After Compaction	12.00 %		
Top 1" Layer after penetration	0.00 %	Average after soak	13.15 %		

Soaking Details			
Soaking Time 96.00 hrs			
Sample Weight after Soaking	10.1210 lb		
Soaking Travel	0.0220 in		
Swell	0.48 %		


Tested By and Date:	Nami 03/23/20
Checked By and Date:	A.F 03/23/20
Approved By and Date:	S.H 03/236/20

Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR1-1	Sample	CBR1-1

ASTM-D1883-99 / AASHTO-T193-98

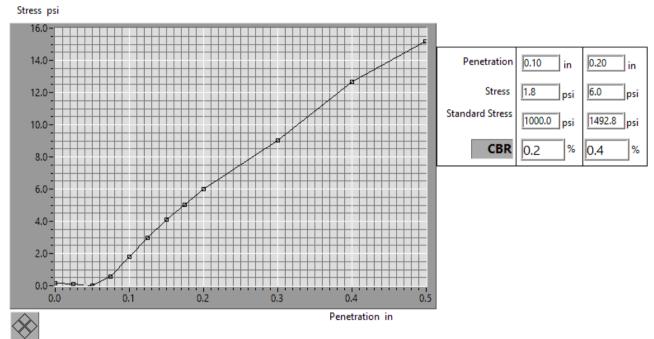
Penetration Stage

Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR1	Sample	CBR1-2

Test Details		
Standard	ASTM D1883-99 / AASHTO T193-98	
Sample Type	Bulk disturbed sample	
Sample Description	Silty Sand	
Location	Cupertino	
Variations from Procedure	None	

Specimen & Equipment Details				
Specimen ReferenceBMethod of Sample PreparationASTM D 18			ASTM D 1883	
Diameter	6.0000 in			
Height	4.5900 in			
Dry Density before Soak	1.93 lb/ft3	Dry Density after Soak	1.93 lb/ft3	
Surcharge Weight	1.0000 lb	Comments		
Moisture Content				
Before Compaction	1.00 %	After Compaction	12.00 %	
Top 1" Layer after penetration	0.00 %	Average after soak	12.88 %	

Soaking Details		
Soaking Time	96.00 hrs	
Sample Weight after Soaking	10.2330 lb	
Soaking Travel	0.0220 in	
Swell	0.48 %	


Tested By and Date:	Nami 03/23/2020	
Checked By and Date:	A.F 03/23/2020	
Approved By and Date:	S.H 03/23/2020	

Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR1	Sample	CBR1-2

ASTM-D1883-99 / AASHTO-T193-98

Penetration Stage

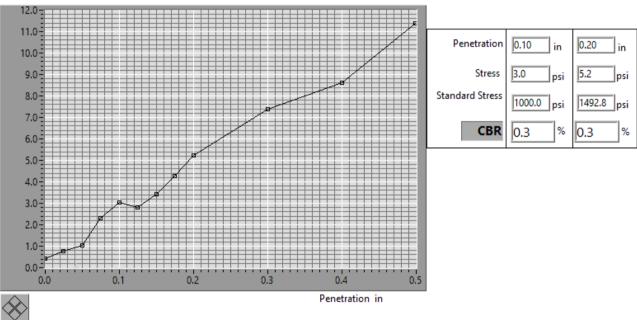
Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR1	Sample	CBR1-3

Test Details		
Standard	ASTM D1883-99 / AASHTO T193-98	
Sample Type	Bulk disturbed sample	
Sample Description	Silty Sand	
Location	Cupertino	
Variations from Procedure	None	

	Specimen & Equipment Details				
Specimen ReferenceCMethod of SampleASPreparationPreparation			ASTM D 1883		
Diameter	6.0000 in				
Height	4.5900 in				
Dry Density before Soak	1.93 lb/ft3	Dry Density after Soak	1.93 lb/ft3		
Surcharge Weight	10.0000 lb	Comments			
Moisture Content					
Before Compaction	1.00 %	After Compaction	12.00 %		
Top 1" Layer after penetration	0.00 %	Average after soak	12.87 %		

Soaking Details		
Soaking Time	96.00 hrs	
Sample Weight after Soaking	10.2360 lb	
Soaking Travel	0.0220 in	
Swell	0.48 %	

Tested By and Date:	Nami 03/23/2020
Checked By and Date:	A.F 03/23/2020
Approved By and Date:	S.H 03/23/2020



Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR1	Sample	CBR1-3

ASTM-D1883-99 / AASHTO-T193-98

Penetration Stage

Stress psi

LABORATORY COMPACTION (Modified) (ASTM D1557)

					B		
					F	Report Date:	3/10/2020
						Project No:	4134
Sample #:	CBR1				Pr	oject Name:	Alan Enterprise LLC
Sample ID:	03102020	- 4134 - Soi	I - CBR1		Proj	ect Address:	22690 Stevens Creek BLVD, Cupertino
Curve No.	1					Technician	GIVO
						Page #:	Page 1 of 2
Type of Material	l:		Soil		Material Descrip	tion:	Silty Sand
Source:			FIELD		Sample Date:		3/10/2020
Sampled by:		MOBIN					
Soil Compacti	ion Data:						
Compaction San	nple No.			1	2	3	4
Weight of Wet S	oil & Mold	(gr)		10163.1	10431.5	10709.8	10474.9
Weight of Mold	(gr)			5905.7	5905.7	5905.7	5905.7
Wet Unit Weigh	t (pcf)			125.31	133.21	141.40	134.49
Tare Number				H-19	AE-9	H-25	H-30
Weight of Tare (gr)			126	125.6	127.5	127.3
Weight of Wet S	oil & Tare ((gr)		457.8	442.3	389.9	456.2
Weight of Dry So	oil & Tare (g	gr)		438.12	416.95	362.65	413.46
Weight of Water	r (gr)			19.68	25.35	27.25	42.74
Weight of Dry So	oil (gr)			312.12	291.35	235.15	286.16
Moisture Conter	nt %			6.31	8.70	11.59	14.94
Dry Unit Weight	(pcf)			117.88	122.55	126.72	117.01
		Maximum	Dry Densit	ty (Lbs/C.F):	126.72		
		Optimum	Mositure (%):	12%		
	4	#4	3/8"	3/4"	1		
Weight Class	А	В	С	D	Bulk Mass (lbs):	1015.3	
Weight (lbs)	687.9	54.3	36.6	236.5			
Percentage (%)	0.678	0.053	0.036	0.233			
	List of Met	thods					
Method A:			No	1	Rammer Type:	Mechanical	
Method A w/ Co	rrection OF	A Method B	: No	1			
Method B:			No	1			
Method B w/ Cor	rrection OR	Method C		1			
Method C:			YES	1			
Not Applicable:			No				
	Gľ	VO	_		Reviewed By:		#REF!
Tested By:							

Moisture Density (AASHTO T265 - ASTM D2216)

Report Date:3/23/2020Project No:4134Project Name:Alan Enterprise LLCProject Address:CupertinoTechnician:Nami

Type of Material:	Soil		Sample Description:		
Source:	Field				
Sampled by:	Nami		Sample Date:	3/8/2020	
Sample No:	CBR1-1	CBR1-2	CBR1-3		
Ht. of Sample:	Disturbed	Disturbed	Disturbed		
Tare No:	CA - 19	CA - 22	CA - 21		
Gross Wet Wt:	589.15	535.63	526.28		
Gross Dry Wt:	562.13	514.41	505.99		
Tare Wt:	336.93	336.73	337.93		
Net Dry Wt:	225.20	177.68	168.06		
Wt. of Water:	27.02	21.22	20.29		
% Moisture	12%	12%	12%		
Liners Dia					
Density Factors					
Dry Density					

Tested By: Nami

Reviewed E A.F

Signature: _____

Signature:

C B R 2

ACHIEVEMENT ASTM: D 1883 - AASHTO: T193-99

Report Date:	3/23/2020	AEC Project#:	4	134
*Client:	Alan Enterprise	Sample No.:	CE	3R2-1
Report ID:	032320 - 41	.34 - L50 - NH	Page #:	4
*Project Address:		Cupertino		

		ty Data	
Condition of specimen	Before S	oaking	After Soaking
Wt. of Compacted Sample,	24.9	47	25.509
Mold and Base Plate, (Lb)			
Wt. of Mold and Base Plate, (Lb)	15.8		
Wt. of Sample, (Lb)	9.1		
Height of Speciment, (in3)	4.5		
Vol. of Specimen, (in3) Moisture Content, (%)	11		
Dry Density, (Lbs/C.F)	123		
		o Determination	
Surcharge Weight, (Lb)	10	Expansion Ratio	
Initial Height of Specimen, (in)	4.59		
Initial Dial Gauge Reading, (in)	0	/01	148\
Final Dial Gauge Reading, (in)	0.048	$ER = \left(\frac{0.5}{4}\right)$	$\left(\frac{048}{59}\right) = 1.045$
Difference, (in)	0.048	ntent Data	
Sample Condition:	before S		After Soaking
•	CBR		Alter Soaking
Sample No Tare No	CBR		
Gross wet weight	861		
Gross Dry Weight	811		
Tare Weight	342		
Net Dry weight	469		
Weight of Water	49.		
Moisture (%)	1:	L	
Remark:			

Tested by (Name / Initial):	Nami	NH	Signature:	
Form#: L-50	Date Prepared: 02/11/20	19	Revision No: 1	Revised: 04/06/2019

ACHIEVEMENT ASTM: D 1883 - AASHTO: T193-99

Report Date:	3/23/2020	AEC Project#:	4	134
*Client:	Alan Enterprise	Sample No.:	CE	3R2-1
Report ID:	032320 - 41	.34 - L50 - NH	Page #:	5
*Project Address:		Cupertino		

		Densit	ty Data	
Condition of specimen		Before S		After Soaking
Wt. of Compacted Sample,				-
Mold and Base Plate, (Lb)		27.4	18	27.697
Wt. of Mold and Base Plate,	. (Lb)	17.5	58	
Wt. of Sample, (Lb)		9.8	6	
Height of Speciment, (in3)		4.5	9	
Vol. of Specimen, (in3)		6		
Moisture Content, (%)		11		
Dry Density, (Lbs/C.F)		123.		
	Expar	nsion Ratio	Determination	
Surcharge Weight, (Lb)		10	Expansion Ratio) (ER):
Initial Height of Specimen, (in) 4	.59		
Initial Dial Gauge Reading, (in)	0	/0.0	048)
Final Dial Gauge Reading, (ir	n) 0.	048	$ER = \left(\frac{1}{4}\right)$	$\left(\frac{048}{59}\right) = 1.045$
Difference, (in)	0.	048	, , , , , , , , , , , , , , , , , , ,	,
		Water Co	ntent Data	
Sample Condition:		before S	oaking	After Soaking
Sample No		CBR2	2-2	
Tare No		CA -	4	
Gross wet weight		525.	94	
Gross Dry Weight		506.	92	
Tare Weight		336	.3	
Net Dry weight		170.	62	
Weight of Water		19.0)2	
Moisture (%)		11		
Remark:				
Tested by (Name / Initial):	Nami	NH	Signature:	

Tested by (Name / Initial):	Nami	NH	Signature:	
Form#: L-50	Date Prepared: 02/11/20	19	Revision No: 1	Revised: 04/06/2019

ACHIEVEMENT ASTM: D 1883 - AASHTO: T193-99

Report Date:	3/23/2020	AEC Project#:	4	134
*Client:	Alan Enterprise	Sample No.:	CE	3R2-1
Report ID:	032320 - 41	.34 - L50 - NH	Page #:	6
*Project Address:		Cupertino		

Condition of specimenBeforeWt. of Compacted Sample, Mold and Base Plate, (Lb)Wt. of Mold and Base Plate, (Lb)Wt. of Sample, (Lb)Height of Speciment, (in3)Vol. of Specimen, (in3)Moisture Content, (%)Dry Density, (Lbs/C.F)Surcharge Weight, (Lb)10Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)WateSample Condition:before	<u> </u>	
Wt. of Compacted Sample, Mold and Base Plate, (Lb)Wt. of Mold and Base Plate, (Lb)Wt. of Sample, (Lb)Height of Speciment, (in3)Vol. of Specimen, (in3)Moisture Content, (%)Dry Density, (Lbs/C.F)ExpansionSurcharge Weight, (Lb)Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)WateSample Condition:	27.798 17.696 10.102 4.59 6 11 123.99 Ratio Determination Expansion Ration Expansion Ration	27.969
Mold and Base Plate, (Lb)Wt. of Mold and Base Plate, (Lb)Wt. of Sample, (Lb)Height of Speciment, (in3)Vol. of Specimen, (in3)Moisture Content, (%)Dry Density, (Lbs/C.F)ExpansionSurcharge Weight, (Lb)Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)WateSample Condition:	$ \begin{array}{r} 17.696 \\ 10.102 \\ 4.59 \\ 6 \\ 11 \\ 123.99 \\ Ratio Determination \\ Expansion Ration \\ Expansin \\ Expansion \\ Expansin \\ Expansin \\ Ex$	on tio (ER):
Wt. of Mold and Base Plate, (Lb)Wt. of Sample, (Lb)Height of Speciment, (in3)Vol. of Specimen, (in3)Moisture Content, (%)Dry Density, (Lbs/C.F)ExpansionSurcharge Weight, (Lb)Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)WateSample Condition:	10.102 4.59 6 11 123.99 Ratio Determination $Expansion Ration$ $ER = \left(-\frac{1}{2}\right)$	tio (ER):
Wt. of Sample, (Lb)Height of Speciment, (in3)Vol. of Specimen, (in3)Moisture Content, (%)Dry Density, (Lbs/C.F)ExpansionSurcharge Weight, (Lb)Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)WateSample Condition:	4.59 6 11 123.99 Ratio Determination $Expansion Ration$ $ER = \left(-\frac{1}{2}\right)$	tio (ER):
Vol. of Specimen, (in3)Moisture Content, (%)Dry Density, (Lbs/C.F)ExpansionSurcharge Weight, (Lb)Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)WateSample Condition:before	$ \begin{array}{c} 6\\ 11\\ 123.99\\ \hline Ratio Determinatio \\ Expansion Ra\\ \hline \\ ER = \left(\cdot \right) $	tio (ER):
Moisture Content, (%)Dry Density, (Lbs/C.F)ExpansionSurcharge Weight, (Lb)10Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)WateSample Condition:	$ \begin{array}{c} 11 \\ 123.99 \\ \hline Ratio Determinatio \\ Expansion Ra \\ \hline ER = \left(\cdot \right) $	tio (ER):
Dry Density, (Lbs/C.F) Expansion Surcharge Weight, (Lb) Initial Height of Specimen, (in) Initial Dial Gauge Reading, (in) Final Dial Gauge Reading, (in) Difference, (in) Outline Sample Condition: Difference	123.99 Ratio Determinatio Expansion Ra	tio (ER):
ExpansionSurcharge Weight, (Lb)10Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)0.048WateSample Condition:beforebefore	Ratio Determinatio Expansion Ra Expansion Ra ER	tio (ER):
Surcharge Weight, (Lb)10Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)0.048WateSample Condition:beformation	$Expansion Ra$ $ER = \left(- \frac{1}{2} \right)$	tio (ER):
Initial Height of Specimen, (in)4.59Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)0.048WateSample Condition:beformation	$ER = \left(\cdot \right)$	
Initial Dial Gauge Reading, (in)0Final Dial Gauge Reading, (in)0.048Difference, (in)0.048WateSample Condition:beformation	<u> </u>	$\left(\frac{0.048}{4.59}\right) = 1.045$
Final Dial Gauge Reading, (in)0.048Difference, (in)0.048WateSample Condition:beformation	<u> </u>	$\left(\frac{0.048}{4.59}\right) = 1.045$
Difference, (in) 0.048 Wate Sample Condition: befo	<u> </u>	$\overline{4.59}$ = 1.045
Wate Sample Condition: befo	<u> </u>	
Wate Sample Condition: befo		,
•	er Content Data	
	ore Soaking	After Soaking
Sample No	CBR2-3	
Tare No	CA - 5	
Gross wet weight	416.63	
Gross Dry Weight	408.8	
Tare Weight	337.02	
Net Dry weight	71.78	
Weight of Water	7.83	
Moisture (%)	11	
Remark:		

Tested by (Name / Initial):	Nami	NH	Signature:	
Form#: L-50	Date Prepared: 02/11/20	19	Revision No: 1	Revised: 04/06/2019

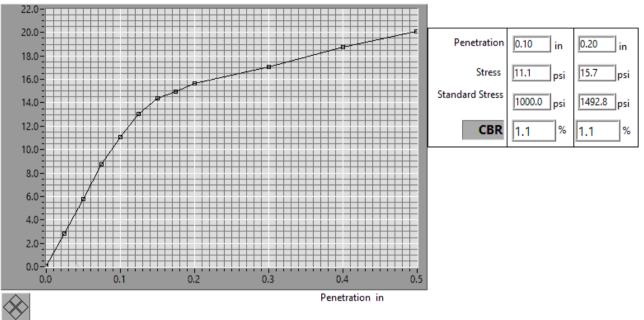
Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR2	Sample	CBR2-1

Test Details		
Standard	ASTM D1883-99 / AASHTO T193-98	
Sample Type	Bulk disturbed sample	
Sample Description	Silty Sand	
Location	Cupertino	
Variations from Procedure	None	

Specimen & Equipment Details				
Specimen Reference	А	Method of Sample Preparation	ASTM D 1883	
Diameter	6.0000 in			
Height	4.5900 in			
Dry Density before Soak	1.75 lb/ft3	Dry Density after Soak	1.75 lb/ft3	
Surcharge Weight	10.0000 lb	Comments		
Moisture Content				
Before Compaction	1.00 %	After Compaction	11.00 %	
Top 1" Layer after penetration	0.00 %	Average after soak	17.84 %	

Soaking Details		
Soaking Time	96.00 hrs	
Sample Weight after Soaking	9.6870 lb	
Soaking Travel	0.0480 in	
Swell	1.05 %	

Tested By and Date:	Nami 03/23/2020
Checked By and Date:	A.F 03/23/2020
Approved By and Date:	S.H 03/23/2020



Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR2	Sample	CBR2-1

ASTM-D1883-99 / AASHTO-T193-98

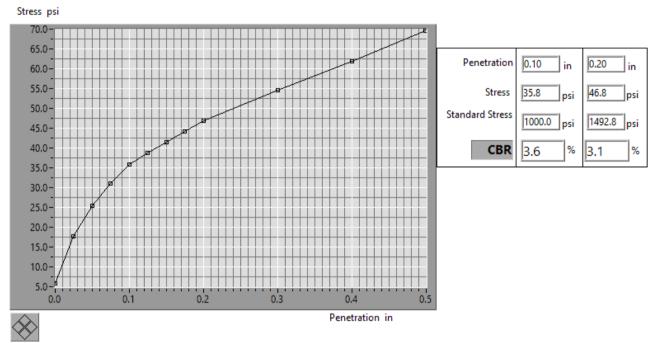
Penetration Stage

Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR2	Sample	CBR2-2

Test Details		
Standard	ASTM D1883-99 / AASHTO T193-98	
Sample Type	Bulk disturbed sample	
Sample Description	Silty Sand	
Location	Cupertino	
Variations from Procedure	None	

Specimen & Equipment Details				
Specimen Reference	В	Method of Sample Preparation	ASTM D 1883	
Diameter	6.0000 in			
Height	4.5900 in			
Dry Density before Soak	1.89 lb/ft3	Dry Density after Soak	1.89 lb/ft3	
Surcharge Weight	10.0000 lb	Comments		
Moisture Content				
Before Compaction	1.00 %	After Compaction	11.00 %	
Top 1" Layer after penetration	0.00 %	Average after soak	14.14 %	

Soaking Details		
Soaking Time	96.00 hrs	
Sample Weight after Soaking	10.1390 lb	
Soaking Travel	0.0480 in	
Swell	1.05 %	


Tested By and Date:	Nami 03/23/2020
Checked By and Date:	A.F 03/23/2020
Approved By and Date:	S.H 03/23/2020

Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR2	Sample	CBR2-2

ASTM-D1883-99 / AASHTO-T193-98

Penetration Stage

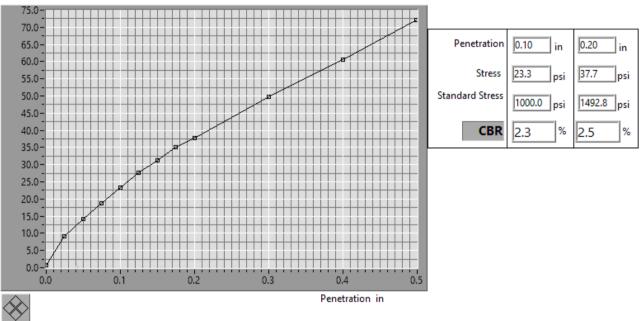
Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR2	Sample	CBR2-3

Test Details					
Standard ASTM D1883-99 / AASHTO T193-98					
Sample Type	Bulk disturbed sample				
Sample Description	Silty Sand				
Location	Cupertino				
Variations from Procedure	None				

Specimen & Equipment Details						
Specimen Reference	С	Method of Sample Preparation	ASTM D 1883			
Diameter	6.0000 in					
Height	4.5900 in					
Dry Density before Soak	1.94 lb/ft3	Dry Density after Soak	1.94 lb/ft3			
Surcharge Weight	10.0000 lb	Comments				
Moisture Content						
Before Compaction	1.00 %	After Compaction	11.00 %			
Top 1" Layer after penetration	0.00 %	Average after soak	12.88 %			

Soaking Details					
Soaking Time 96.00 hrs					
Sample Weight after Soaking	10.2730 lb				
Soaking Travel	0.0480 in				
Swell	1.05 %				

Tested By and Date:	Nami 03/23/2020
Checked By and Date:	A.F 03/23/2020
Approved By and Date:	S.H 03/23/2020



Client	AEC	Lab Ref	
Project	Alan Enterprise LLC	Job	4134
Borehole	CBR2	Sample	CBR2-3

ASTM-D1883-99 / AASHTO-T193-98

Penetration Stage

Stress psi

LABORATORY COMPACTION (Modified) (ASTM D1557)

					F	Report Date:	3/10/2020	
						Project No:	4134	
Sample #:	CBR2			Project Name:		Alan Enterprise LLC		
Sample ID:	03102020	03102020 - 4134 - Soil - CBR2			Proj	ect Address:	22690 Stevens Creek BLVD, Cupertin	
Curve No. 2					Technician	GIVO		
					Page #:		Page 1 of 2	
Type of Material: Soil				Material Description:		Silty Sand		
Source:			FIELD		Sample Date:		3/10/2020	
Sampled by:		MOBIN						
Soil Compacti	ion Data:							
Compaction Sar	mple No.			1	2	3	4	
Weight of Wet S	Soil & Mold	(gr)		10206.8	10503.3	10591.2	10310.9	
Weight of Mold	(gr)			5905.7	5905.7	5905.7	5905.7	
Wet Unit Weigh	it (pcf)			126.60	135.32	137.91	129.66	
Tare Number				A-7	AE-21	H-31	H-8	
Weight of Tare ((gr)			134.2	126.3	127.9	129.5	
Weight of Wet Soil & Tare (gr)			451.4	453.8	433.5	444.4		
Weight of Dry Soil & Tare (gr)			431.75	425.35	400.95	402.1		
Weight of Water (gr)			19.65	28.45	32.55	42.3		
Weight of Dry Soil (gr)			297.55	299.05	273.05	272.6		
Moisture Contei				6.60	9.51	11.92	15.52	
Dry Unit Weight	t (pcf)			118.75	123.57	123.22	112.24	
		Maximun	n Drv Densi	ty (Lbs/C.F):	123.99			
			, Mositure (11%			
		#4	3/8"	3/4"	1			
Weight Class	А	В	С	D	Bulk Mass (lbs):	1058.7		
Weight (lbs)	756.3	37.5	45.6	219.3				
Percentage (%)	0.714	0.035	0.043	0.207				
	List of Me	thods			-			
Method A:			No	1	Rammer Type:	Mechanical		
			: No	1				
Method A w/ Co	-			-				
Method A w/ Co Method B:			INU					
	rrection OI	R Method C	-	-				
Method B: Method B w/ Co	rrection OI	R Method C	: No	-				
Method B:	rrection OF	R Method C	-	-				
Method B: Method B w/ Co Method C:			No YES		Reviewed By:		#REF!	

Moisture Density (AASHTO T265 - ASTM D2216)

Report Date:3/23/2020Project No:4134Project Name:Alan Enterprise LLCProject Address:CupertinoTechnician:Nami

Type of Material:	Soil		Sample Description:			
Source:	Field					
Sampled by:	Nami		Sample Date:	3/8/2020	3/8/2020	
Sample No:	CBR2 - 1	CBR2 - 2	CBR2 - 3			
Ht. of Sample:	Disturbed	Disturbed	Disturbed			
Tare No:	CA - 3	CA - 4	CA - 5			
Gross Wet Wt:	861.22	525.94	416.63			
Gross Dry Wt:	811.47	506.92	408.80			
Tare Wt:	342.20	336.30	337.02			
Net Dry Wt:	469.27	170.62	71.78			
Wt. of Water:	49.75	19.02	7.83			
% Moisture	11%	11%	11%			
Liners Dia						
Density Factors						
Dry Density						

Tested By: Nami

Reviewed E A.F

Signature: _____

Signature: